cstegr.c
Go to the documentation of this file.
00001 /* cstegr.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int cstegr_(char *jobz, char *range, integer *n, real *d__, 
00017         real *e, real *vl, real *vu, integer *il, integer *iu, real *abstol, 
00018         integer *m, real *w, complex *z__, integer *ldz, integer *isuppz, 
00019         real *work, integer *lwork, integer *iwork, integer *liwork, integer *
00020         info)
00021 {
00022     /* System generated locals */
00023     integer z_dim1, z_offset;
00024 
00025     /* Local variables */
00026     extern /* Subroutine */ int cstemr_(char *, char *, integer *, real *, 
00027             real *, real *, real *, integer *, integer *, integer *, real *, 
00028             complex *, integer *, integer *, integer *, logical *, real *, 
00029             integer *, integer *, integer *, integer *);
00030     logical tryrac;
00031 
00032 
00033 
00034 /*  -- LAPACK computational routine (version 3.2) -- */
00035 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00036 /*     November 2006 */
00037 
00038 /*     .. Scalar Arguments .. */
00039 /*     .. */
00040 /*     .. Array Arguments .. */
00041 /*     .. */
00042 
00043 /*  Purpose */
00044 /*  ======= */
00045 
00046 /*  CSTEGR computes selected eigenvalues and, optionally, eigenvectors */
00047 /*  of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */
00048 /*  a well defined set of pairwise different real eigenvalues, the corresponding */
00049 /*  real eigenvectors are pairwise orthogonal. */
00050 
00051 /*  The spectrum may be computed either completely or partially by specifying */
00052 /*  either an interval (VL,VU] or a range of indices IL:IU for the desired */
00053 /*  eigenvalues. */
00054 
00055 /*  CSTEGR is a compatability wrapper around the improved CSTEMR routine. */
00056 /*  See SSTEMR for further details. */
00057 
00058 /*  One important change is that the ABSTOL parameter no longer provides any */
00059 /*  benefit and hence is no longer used. */
00060 
00061 /*  Note : CSTEGR and CSTEMR work only on machines which follow */
00062 /*  IEEE-754 floating-point standard in their handling of infinities and */
00063 /*  NaNs.  Normal execution may create these exceptiona values and hence */
00064 /*  may abort due to a floating point exception in environments which */
00065 /*  do not conform to the IEEE-754 standard. */
00066 
00067 /*  Arguments */
00068 /*  ========= */
00069 
00070 /*  JOBZ    (input) CHARACTER*1 */
00071 /*          = 'N':  Compute eigenvalues only; */
00072 /*          = 'V':  Compute eigenvalues and eigenvectors. */
00073 
00074 /*  RANGE   (input) CHARACTER*1 */
00075 /*          = 'A': all eigenvalues will be found. */
00076 /*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
00077 /*                 will be found. */
00078 /*          = 'I': the IL-th through IU-th eigenvalues will be found. */
00079 
00080 /*  N       (input) INTEGER */
00081 /*          The order of the matrix.  N >= 0. */
00082 
00083 /*  D       (input/output) REAL array, dimension (N) */
00084 /*          On entry, the N diagonal elements of the tridiagonal matrix */
00085 /*          T. On exit, D is overwritten. */
00086 
00087 /*  E       (input/output) REAL array, dimension (N) */
00088 /*          On entry, the (N-1) subdiagonal elements of the tridiagonal */
00089 /*          matrix T in elements 1 to N-1 of E. E(N) need not be set on */
00090 /*          input, but is used internally as workspace. */
00091 /*          On exit, E is overwritten. */
00092 
00093 /*  VL      (input) REAL */
00094 /*  VU      (input) REAL */
00095 /*          If RANGE='V', the lower and upper bounds of the interval to */
00096 /*          be searched for eigenvalues. VL < VU. */
00097 /*          Not referenced if RANGE = 'A' or 'I'. */
00098 
00099 /*  IL      (input) INTEGER */
00100 /*  IU      (input) INTEGER */
00101 /*          If RANGE='I', the indices (in ascending order) of the */
00102 /*          smallest and largest eigenvalues to be returned. */
00103 /*          1 <= IL <= IU <= N, if N > 0. */
00104 /*          Not referenced if RANGE = 'A' or 'V'. */
00105 
00106 /*  ABSTOL  (input) REAL */
00107 /*          Unused.  Was the absolute error tolerance for the */
00108 /*          eigenvalues/eigenvectors in previous versions. */
00109 
00110 /*  M       (output) INTEGER */
00111 /*          The total number of eigenvalues found.  0 <= M <= N. */
00112 /*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
00113 
00114 /*  W       (output) REAL array, dimension (N) */
00115 /*          The first M elements contain the selected eigenvalues in */
00116 /*          ascending order. */
00117 
00118 /*  Z       (output) COMPLEX array, dimension (LDZ, max(1,M) ) */
00119 /*          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */
00120 /*          contain the orthonormal eigenvectors of the matrix T */
00121 /*          corresponding to the selected eigenvalues, with the i-th */
00122 /*          column of Z holding the eigenvector associated with W(i). */
00123 /*          If JOBZ = 'N', then Z is not referenced. */
00124 /*          Note: the user must ensure that at least max(1,M) columns are */
00125 /*          supplied in the array Z; if RANGE = 'V', the exact value of M */
00126 /*          is not known in advance and an upper bound must be used. */
00127 /*          Supplying N columns is always safe. */
00128 
00129 /*  LDZ     (input) INTEGER */
00130 /*          The leading dimension of the array Z.  LDZ >= 1, and if */
00131 /*          JOBZ = 'V', then LDZ >= max(1,N). */
00132 
00133 /*  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) ) */
00134 /*          The support of the eigenvectors in Z, i.e., the indices */
00135 /*          indicating the nonzero elements in Z. The i-th computed eigenvector */
00136 /*          is nonzero only in elements ISUPPZ( 2*i-1 ) through */
00137 /*          ISUPPZ( 2*i ). This is relevant in the case when the matrix */
00138 /*          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */
00139 
00140 /*  WORK    (workspace/output) REAL array, dimension (LWORK) */
00141 /*          On exit, if INFO = 0, WORK(1) returns the optimal */
00142 /*          (and minimal) LWORK. */
00143 
00144 /*  LWORK   (input) INTEGER */
00145 /*          The dimension of the array WORK. LWORK >= max(1,18*N) */
00146 /*          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. */
00147 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00148 /*          only calculates the optimal size of the WORK array, returns */
00149 /*          this value as the first entry of the WORK array, and no error */
00150 /*          message related to LWORK is issued by XERBLA. */
00151 
00152 /*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK) */
00153 /*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
00154 
00155 /*  LIWORK  (input) INTEGER */
00156 /*          The dimension of the array IWORK.  LIWORK >= max(1,10*N) */
00157 /*          if the eigenvectors are desired, and LIWORK >= max(1,8*N) */
00158 /*          if only the eigenvalues are to be computed. */
00159 /*          If LIWORK = -1, then a workspace query is assumed; the */
00160 /*          routine only calculates the optimal size of the IWORK array, */
00161 /*          returns this value as the first entry of the IWORK array, and */
00162 /*          no error message related to LIWORK is issued by XERBLA. */
00163 
00164 /*  INFO    (output) INTEGER */
00165 /*          On exit, INFO */
00166 /*          = 0:  successful exit */
00167 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00168 /*          > 0:  if INFO = 1X, internal error in SLARRE, */
00169 /*                if INFO = 2X, internal error in CLARRV. */
00170 /*                Here, the digit X = ABS( IINFO ) < 10, where IINFO is */
00171 /*                the nonzero error code returned by SLARRE or */
00172 /*                CLARRV, respectively. */
00173 
00174 /*  Further Details */
00175 /*  =============== */
00176 
00177 /*  Based on contributions by */
00178 /*     Inderjit Dhillon, IBM Almaden, USA */
00179 /*     Osni Marques, LBNL/NERSC, USA */
00180 /*     Christof Voemel, LBNL/NERSC, USA */
00181 
00182 /*  ===================================================================== */
00183 
00184 /*     .. Local Scalars .. */
00185 /*     .. */
00186 /*     .. External Subroutines .. */
00187 /*     .. */
00188 /*     .. Executable Statements .. */
00189     /* Parameter adjustments */
00190     --d__;
00191     --e;
00192     --w;
00193     z_dim1 = *ldz;
00194     z_offset = 1 + z_dim1;
00195     z__ -= z_offset;
00196     --isuppz;
00197     --work;
00198     --iwork;
00199 
00200     /* Function Body */
00201     *info = 0;
00202     tryrac = FALSE_;
00203     cstemr_(jobz, range, n, &d__[1], &e[1], vl, vu, il, iu, m, &w[1], &z__[
00204             z_offset], ldz, n, &isuppz[1], &tryrac, &work[1], lwork, &iwork[1]
00205 , liwork, info);
00206 
00207 /*     End of CSTEGR */
00208 
00209     return 0;
00210 } /* cstegr_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:34