cqrt02.c
Go to the documentation of this file.
00001 /* cqrt02.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     char srnamt[32];
00020 } srnamc_;
00021 
00022 #define srnamc_1 srnamc_
00023 
00024 /* Table of constant values */
00025 
00026 static complex c_b1 = {-1e10f,-1e10f};
00027 static complex c_b8 = {0.f,0.f};
00028 static complex c_b13 = {-1.f,0.f};
00029 static complex c_b14 = {1.f,0.f};
00030 static real c_b22 = -1.f;
00031 static real c_b23 = 1.f;
00032 
00033 /* Subroutine */ int cqrt02_(integer *m, integer *n, integer *k, complex *a, 
00034         complex *af, complex *q, complex *r__, integer *lda, complex *tau, 
00035         complex *work, integer *lwork, real *rwork, real *result)
00036 {
00037     /* System generated locals */
00038     integer a_dim1, a_offset, af_dim1, af_offset, q_dim1, q_offset, r_dim1, 
00039             r_offset, i__1;
00040 
00041     /* Builtin functions */
00042     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00043 
00044     /* Local variables */
00045     real eps;
00046     integer info;
00047     extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, 
00048             integer *, complex *, complex *, integer *, complex *, integer *, 
00049             complex *, complex *, integer *), cherk_(char *, 
00050             char *, integer *, integer *, real *, complex *, integer *, real *
00051 , complex *, integer *);
00052     real resid, anorm;
00053     extern doublereal clange_(char *, integer *, integer *, complex *, 
00054             integer *, real *), slamch_(char *);
00055     extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
00056             *, integer *, complex *, integer *), claset_(char *, 
00057             integer *, integer *, complex *, complex *, complex *, integer *);
00058     extern doublereal clansy_(char *, char *, integer *, complex *, integer *, 
00059              real *);
00060     extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, 
00061             complex *, integer *, complex *, complex *, integer *, integer *);
00062 
00063 
00064 /*  -- LAPACK test routine (version 3.1) -- */
00065 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00066 /*     November 2006 */
00067 
00068 /*     .. Scalar Arguments .. */
00069 /*     .. */
00070 /*     .. Array Arguments .. */
00071 /*     .. */
00072 
00073 /*  Purpose */
00074 /*  ======= */
00075 
00076 /*  CQRT02 tests CUNGQR, which generates an m-by-n matrix Q with */
00077 /*  orthonornmal columns that is defined as the product of k elementary */
00078 /*  reflectors. */
00079 
00080 /*  Given the QR factorization of an m-by-n matrix A, CQRT02 generates */
00081 /*  the orthogonal matrix Q defined by the factorization of the first k */
00082 /*  columns of A; it compares R(1:n,1:k) with Q(1:m,1:n)'*A(1:m,1:k), */
00083 /*  and checks that the columns of Q are orthonormal. */
00084 
00085 /*  Arguments */
00086 /*  ========= */
00087 
00088 /*  M       (input) INTEGER */
00089 /*          The number of rows of the matrix Q to be generated.  M >= 0. */
00090 
00091 /*  N       (input) INTEGER */
00092 /*          The number of columns of the matrix Q to be generated. */
00093 /*          M >= N >= 0. */
00094 
00095 /*  K       (input) INTEGER */
00096 /*          The number of elementary reflectors whose product defines the */
00097 /*          matrix Q. N >= K >= 0. */
00098 
00099 /*  A       (input) COMPLEX array, dimension (LDA,N) */
00100 /*          The m-by-n matrix A which was factorized by CQRT01. */
00101 
00102 /*  AF      (input) COMPLEX array, dimension (LDA,N) */
00103 /*          Details of the QR factorization of A, as returned by CGEQRF. */
00104 /*          See CGEQRF for further details. */
00105 
00106 /*  Q       (workspace) COMPLEX array, dimension (LDA,N) */
00107 
00108 /*  R       (workspace) COMPLEX array, dimension (LDA,N) */
00109 
00110 /*  LDA     (input) INTEGER */
00111 /*          The leading dimension of the arrays A, AF, Q and R. LDA >= M. */
00112 
00113 /*  TAU     (input) COMPLEX array, dimension (N) */
00114 /*          The scalar factors of the elementary reflectors corresponding */
00115 /*          to the QR factorization in AF. */
00116 
00117 /*  WORK    (workspace) COMPLEX array, dimension (LWORK) */
00118 
00119 /*  LWORK   (input) INTEGER */
00120 /*          The dimension of the array WORK. */
00121 
00122 /*  RWORK   (workspace) REAL array, dimension (M) */
00123 
00124 /*  RESULT  (output) REAL array, dimension (2) */
00125 /*          The test ratios: */
00126 /*          RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS ) */
00127 /*          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) */
00128 
00129 /*  ===================================================================== */
00130 
00131 /*     .. Parameters .. */
00132 /*     .. */
00133 /*     .. Local Scalars .. */
00134 /*     .. */
00135 /*     .. External Functions .. */
00136 /*     .. */
00137 /*     .. External Subroutines .. */
00138 /*     .. */
00139 /*     .. Intrinsic Functions .. */
00140 /*     .. */
00141 /*     .. Scalars in Common .. */
00142 /*     .. */
00143 /*     .. Common blocks .. */
00144 /*     .. */
00145 /*     .. Executable Statements .. */
00146 
00147     /* Parameter adjustments */
00148     r_dim1 = *lda;
00149     r_offset = 1 + r_dim1;
00150     r__ -= r_offset;
00151     q_dim1 = *lda;
00152     q_offset = 1 + q_dim1;
00153     q -= q_offset;
00154     af_dim1 = *lda;
00155     af_offset = 1 + af_dim1;
00156     af -= af_offset;
00157     a_dim1 = *lda;
00158     a_offset = 1 + a_dim1;
00159     a -= a_offset;
00160     --tau;
00161     --work;
00162     --rwork;
00163     --result;
00164 
00165     /* Function Body */
00166     eps = slamch_("Epsilon");
00167 
00168 /*     Copy the first k columns of the factorization to the array Q */
00169 
00170     claset_("Full", m, n, &c_b1, &c_b1, &q[q_offset], lda);
00171     i__1 = *m - 1;
00172     clacpy_("Lower", &i__1, k, &af[af_dim1 + 2], lda, &q[q_dim1 + 2], lda);
00173 
00174 /*     Generate the first n columns of the matrix Q */
00175 
00176     s_copy(srnamc_1.srnamt, "CUNGQR", (ftnlen)32, (ftnlen)6);
00177     cungqr_(m, n, k, &q[q_offset], lda, &tau[1], &work[1], lwork, &info);
00178 
00179 /*     Copy R(1:n,1:k) */
00180 
00181     claset_("Full", n, k, &c_b8, &c_b8, &r__[r_offset], lda);
00182     clacpy_("Upper", n, k, &af[af_offset], lda, &r__[r_offset], lda);
00183 
00184 /*     Compute R(1:n,1:k) - Q(1:m,1:n)' * A(1:m,1:k) */
00185 
00186     cgemm_("Conjugate transpose", "No transpose", n, k, m, &c_b13, &q[
00187             q_offset], lda, &a[a_offset], lda, &c_b14, &r__[r_offset], lda);
00188 
00189 /*     Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) . */
00190 
00191     anorm = clange_("1", m, k, &a[a_offset], lda, &rwork[1]);
00192     resid = clange_("1", n, k, &r__[r_offset], lda, &rwork[1]);
00193     if (anorm > 0.f) {
00194         result[1] = resid / (real) max(1,*m) / anorm / eps;
00195     } else {
00196         result[1] = 0.f;
00197     }
00198 
00199 /*     Compute I - Q'*Q */
00200 
00201     claset_("Full", n, n, &c_b8, &c_b14, &r__[r_offset], lda);
00202     cherk_("Upper", "Conjugate transpose", n, m, &c_b22, &q[q_offset], lda, &
00203             c_b23, &r__[r_offset], lda);
00204 
00205 /*     Compute norm( I - Q'*Q ) / ( M * EPS ) . */
00206 
00207     resid = clansy_("1", "Upper", n, &r__[r_offset], lda, &rwork[1]);
00208 
00209     result[2] = resid / (real) max(1,*m) / eps;
00210 
00211     return 0;
00212 
00213 /*     End of CQRT02 */
00214 
00215 } /* cqrt02_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:33