cptsvx.c
Go to the documentation of this file.
00001 /* cptsvx.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int cptsvx_(char *fact, integer *n, integer *nrhs, real *d__, 
00021          complex *e, real *df, complex *ef, complex *b, integer *ldb, complex 
00022         *x, integer *ldx, real *rcond, real *ferr, real *berr, complex *work, 
00023         real *rwork, integer *info)
00024 {
00025     /* System generated locals */
00026     integer b_dim1, b_offset, x_dim1, x_offset, i__1;
00027 
00028     /* Local variables */
00029     extern logical lsame_(char *, char *);
00030     real anorm;
00031     extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
00032             complex *, integer *), scopy_(integer *, real *, integer *, real *
00033 , integer *);
00034     extern doublereal slamch_(char *), clanht_(char *, integer *, 
00035             real *, complex *);
00036     logical nofact;
00037     extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
00038             *, integer *, complex *, integer *), xerbla_(char *, 
00039             integer *), cptcon_(integer *, real *, complex *, real *, 
00040             real *, real *, integer *), cptrfs_(char *, integer *, integer *, 
00041             real *, complex *, real *, complex *, complex *, integer *, 
00042             complex *, integer *, real *, real *, complex *, real *, integer *
00043 ), cpttrf_(integer *, real *, complex *, integer *), 
00044             cpttrs_(char *, integer *, integer *, real *, complex *, complex *
00045 , integer *, integer *);
00046 
00047 
00048 /*  -- LAPACK routine (version 3.2) -- */
00049 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00050 /*     November 2006 */
00051 
00052 /*     .. Scalar Arguments .. */
00053 /*     .. */
00054 /*     .. Array Arguments .. */
00055 /*     .. */
00056 
00057 /*  Purpose */
00058 /*  ======= */
00059 
00060 /*  CPTSVX uses the factorization A = L*D*L**H to compute the solution */
00061 /*  to a complex system of linear equations A*X = B, where A is an */
00062 /*  N-by-N Hermitian positive definite tridiagonal matrix and X and B */
00063 /*  are N-by-NRHS matrices. */
00064 
00065 /*  Error bounds on the solution and a condition estimate are also */
00066 /*  provided. */
00067 
00068 /*  Description */
00069 /*  =========== */
00070 
00071 /*  The following steps are performed: */
00072 
00073 /*  1. If FACT = 'N', the matrix A is factored as A = L*D*L**H, where L */
00074 /*     is a unit lower bidiagonal matrix and D is diagonal.  The */
00075 /*     factorization can also be regarded as having the form */
00076 /*     A = U**H*D*U. */
00077 
00078 /*  2. If the leading i-by-i principal minor is not positive definite, */
00079 /*     then the routine returns with INFO = i. Otherwise, the factored */
00080 /*     form of A is used to estimate the condition number of the matrix */
00081 /*     A.  If the reciprocal of the condition number is less than machine */
00082 /*     precision, INFO = N+1 is returned as a warning, but the routine */
00083 /*     still goes on to solve for X and compute error bounds as */
00084 /*     described below. */
00085 
00086 /*  3. The system of equations is solved for X using the factored form */
00087 /*     of A. */
00088 
00089 /*  4. Iterative refinement is applied to improve the computed solution */
00090 /*     matrix and calculate error bounds and backward error estimates */
00091 /*     for it. */
00092 
00093 /*  Arguments */
00094 /*  ========= */
00095 
00096 /*  FACT    (input) CHARACTER*1 */
00097 /*          Specifies whether or not the factored form of the matrix */
00098 /*          A is supplied on entry. */
00099 /*          = 'F':  On entry, DF and EF contain the factored form of A. */
00100 /*                  D, E, DF, and EF will not be modified. */
00101 /*          = 'N':  The matrix A will be copied to DF and EF and */
00102 /*                  factored. */
00103 
00104 /*  N       (input) INTEGER */
00105 /*          The order of the matrix A.  N >= 0. */
00106 
00107 /*  NRHS    (input) INTEGER */
00108 /*          The number of right hand sides, i.e., the number of columns */
00109 /*          of the matrices B and X.  NRHS >= 0. */
00110 
00111 /*  D       (input) REAL array, dimension (N) */
00112 /*          The n diagonal elements of the tridiagonal matrix A. */
00113 
00114 /*  E       (input) COMPLEX array, dimension (N-1) */
00115 /*          The (n-1) subdiagonal elements of the tridiagonal matrix A. */
00116 
00117 /*  DF      (input or output) REAL array, dimension (N) */
00118 /*          If FACT = 'F', then DF is an input argument and on entry */
00119 /*          contains the n diagonal elements of the diagonal matrix D */
00120 /*          from the L*D*L**H factorization of A. */
00121 /*          If FACT = 'N', then DF is an output argument and on exit */
00122 /*          contains the n diagonal elements of the diagonal matrix D */
00123 /*          from the L*D*L**H factorization of A. */
00124 
00125 /*  EF      (input or output) COMPLEX array, dimension (N-1) */
00126 /*          If FACT = 'F', then EF is an input argument and on entry */
00127 /*          contains the (n-1) subdiagonal elements of the unit */
00128 /*          bidiagonal factor L from the L*D*L**H factorization of A. */
00129 /*          If FACT = 'N', then EF is an output argument and on exit */
00130 /*          contains the (n-1) subdiagonal elements of the unit */
00131 /*          bidiagonal factor L from the L*D*L**H factorization of A. */
00132 
00133 /*  B       (input) COMPLEX array, dimension (LDB,NRHS) */
00134 /*          The N-by-NRHS right hand side matrix B. */
00135 
00136 /*  LDB     (input) INTEGER */
00137 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00138 
00139 /*  X       (output) COMPLEX array, dimension (LDX,NRHS) */
00140 /*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */
00141 
00142 /*  LDX     (input) INTEGER */
00143 /*          The leading dimension of the array X.  LDX >= max(1,N). */
00144 
00145 /*  RCOND   (output) REAL */
00146 /*          The reciprocal condition number of the matrix A.  If RCOND */
00147 /*          is less than the machine precision (in particular, if */
00148 /*          RCOND = 0), the matrix is singular to working precision. */
00149 /*          This condition is indicated by a return code of INFO > 0. */
00150 
00151 /*  FERR    (output) REAL array, dimension (NRHS) */
00152 /*          The forward error bound for each solution vector */
00153 /*          X(j) (the j-th column of the solution matrix X). */
00154 /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
00155 /*          is an estimated upper bound for the magnitude of the largest */
00156 /*          element in (X(j) - XTRUE) divided by the magnitude of the */
00157 /*          largest element in X(j). */
00158 
00159 /*  BERR    (output) REAL array, dimension (NRHS) */
00160 /*          The componentwise relative backward error of each solution */
00161 /*          vector X(j) (i.e., the smallest relative change in any */
00162 /*          element of A or B that makes X(j) an exact solution). */
00163 
00164 /*  WORK    (workspace) COMPLEX array, dimension (N) */
00165 
00166 /*  RWORK   (workspace) REAL array, dimension (N) */
00167 
00168 /*  INFO    (output) INTEGER */
00169 /*          = 0:  successful exit */
00170 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00171 /*          > 0:  if INFO = i, and i is */
00172 /*                <= N:  the leading minor of order i of A is */
00173 /*                       not positive definite, so the factorization */
00174 /*                       could not be completed, and the solution has not */
00175 /*                       been computed. RCOND = 0 is returned. */
00176 /*                = N+1: U is nonsingular, but RCOND is less than machine */
00177 /*                       precision, meaning that the matrix is singular */
00178 /*                       to working precision.  Nevertheless, the */
00179 /*                       solution and error bounds are computed because */
00180 /*                       there are a number of situations where the */
00181 /*                       computed solution can be more accurate than the */
00182 /*                       value of RCOND would suggest. */
00183 
00184 /*  ===================================================================== */
00185 
00186 /*     .. Parameters .. */
00187 /*     .. */
00188 /*     .. Local Scalars .. */
00189 /*     .. */
00190 /*     .. External Functions .. */
00191 /*     .. */
00192 /*     .. External Subroutines .. */
00193 /*     .. */
00194 /*     .. Intrinsic Functions .. */
00195 /*     .. */
00196 /*     .. Executable Statements .. */
00197 
00198 /*     Test the input parameters. */
00199 
00200     /* Parameter adjustments */
00201     --d__;
00202     --e;
00203     --df;
00204     --ef;
00205     b_dim1 = *ldb;
00206     b_offset = 1 + b_dim1;
00207     b -= b_offset;
00208     x_dim1 = *ldx;
00209     x_offset = 1 + x_dim1;
00210     x -= x_offset;
00211     --ferr;
00212     --berr;
00213     --work;
00214     --rwork;
00215 
00216     /* Function Body */
00217     *info = 0;
00218     nofact = lsame_(fact, "N");
00219     if (! nofact && ! lsame_(fact, "F")) {
00220         *info = -1;
00221     } else if (*n < 0) {
00222         *info = -2;
00223     } else if (*nrhs < 0) {
00224         *info = -3;
00225     } else if (*ldb < max(1,*n)) {
00226         *info = -9;
00227     } else if (*ldx < max(1,*n)) {
00228         *info = -11;
00229     }
00230     if (*info != 0) {
00231         i__1 = -(*info);
00232         xerbla_("CPTSVX", &i__1);
00233         return 0;
00234     }
00235 
00236     if (nofact) {
00237 
00238 /*        Compute the L*D*L' (or U'*D*U) factorization of A. */
00239 
00240         scopy_(n, &d__[1], &c__1, &df[1], &c__1);
00241         if (*n > 1) {
00242             i__1 = *n - 1;
00243             ccopy_(&i__1, &e[1], &c__1, &ef[1], &c__1);
00244         }
00245         cpttrf_(n, &df[1], &ef[1], info);
00246 
00247 /*        Return if INFO is non-zero. */
00248 
00249         if (*info > 0) {
00250             *rcond = 0.f;
00251             return 0;
00252         }
00253     }
00254 
00255 /*     Compute the norm of the matrix A. */
00256 
00257     anorm = clanht_("1", n, &d__[1], &e[1]);
00258 
00259 /*     Compute the reciprocal of the condition number of A. */
00260 
00261     cptcon_(n, &df[1], &ef[1], &anorm, rcond, &rwork[1], info);
00262 
00263 /*     Compute the solution vectors X. */
00264 
00265     clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
00266     cpttrs_("Lower", n, nrhs, &df[1], &ef[1], &x[x_offset], ldx, info);
00267 
00268 /*     Use iterative refinement to improve the computed solutions and */
00269 /*     compute error bounds and backward error estimates for them. */
00270 
00271     cptrfs_("Lower", n, nrhs, &d__[1], &e[1], &df[1], &ef[1], &b[b_offset], 
00272             ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1], &rwork[1], 
00273             info);
00274 
00275 /*     Set INFO = N+1 if the matrix is singular to working precision. */
00276 
00277     if (*rcond < slamch_("Epsilon")) {
00278         *info = *n + 1;
00279     }
00280 
00281     return 0;
00282 
00283 /*     End of CPTSVX */
00284 
00285 } /* cptsvx_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:33