00001 /* cpotri.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int cpotri_(char *uplo, integer *n, complex *a, integer *lda, 00017 integer *info) 00018 { 00019 /* System generated locals */ 00020 integer a_dim1, a_offset, i__1; 00021 00022 /* Local variables */ 00023 extern logical lsame_(char *, char *); 00024 extern /* Subroutine */ int xerbla_(char *, integer *), clauum_( 00025 char *, integer *, complex *, integer *, integer *), 00026 ctrtri_(char *, char *, integer *, complex *, integer *, integer * 00027 ); 00028 00029 00030 /* -- LAPACK routine (version 3.2) -- */ 00031 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00032 /* November 2006 */ 00033 00034 /* .. Scalar Arguments .. */ 00035 /* .. */ 00036 /* .. Array Arguments .. */ 00037 /* .. */ 00038 00039 /* Purpose */ 00040 /* ======= */ 00041 00042 /* CPOTRI computes the inverse of a complex Hermitian positive definite */ 00043 /* matrix A using the Cholesky factorization A = U**H*U or A = L*L**H */ 00044 /* computed by CPOTRF. */ 00045 00046 /* Arguments */ 00047 /* ========= */ 00048 00049 /* UPLO (input) CHARACTER*1 */ 00050 /* = 'U': Upper triangle of A is stored; */ 00051 /* = 'L': Lower triangle of A is stored. */ 00052 00053 /* N (input) INTEGER */ 00054 /* The order of the matrix A. N >= 0. */ 00055 00056 /* A (input/output) COMPLEX array, dimension (LDA,N) */ 00057 /* On entry, the triangular factor U or L from the Cholesky */ 00058 /* factorization A = U**H*U or A = L*L**H, as computed by */ 00059 /* CPOTRF. */ 00060 /* On exit, the upper or lower triangle of the (Hermitian) */ 00061 /* inverse of A, overwriting the input factor U or L. */ 00062 00063 /* LDA (input) INTEGER */ 00064 /* The leading dimension of the array A. LDA >= max(1,N). */ 00065 00066 /* INFO (output) INTEGER */ 00067 /* = 0: successful exit */ 00068 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00069 /* > 0: if INFO = i, the (i,i) element of the factor U or L is */ 00070 /* zero, and the inverse could not be computed. */ 00071 00072 /* ===================================================================== */ 00073 00074 /* .. External Functions .. */ 00075 /* .. */ 00076 /* .. External Subroutines .. */ 00077 /* .. */ 00078 /* .. Intrinsic Functions .. */ 00079 /* .. */ 00080 /* .. Executable Statements .. */ 00081 00082 /* Test the input parameters. */ 00083 00084 /* Parameter adjustments */ 00085 a_dim1 = *lda; 00086 a_offset = 1 + a_dim1; 00087 a -= a_offset; 00088 00089 /* Function Body */ 00090 *info = 0; 00091 if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { 00092 *info = -1; 00093 } else if (*n < 0) { 00094 *info = -2; 00095 } else if (*lda < max(1,*n)) { 00096 *info = -4; 00097 } 00098 if (*info != 0) { 00099 i__1 = -(*info); 00100 xerbla_("CPOTRI", &i__1); 00101 return 0; 00102 } 00103 00104 /* Quick return if possible */ 00105 00106 if (*n == 0) { 00107 return 0; 00108 } 00109 00110 /* Invert the triangular Cholesky factor U or L. */ 00111 00112 ctrtri_(uplo, "Non-unit", n, &a[a_offset], lda, info); 00113 if (*info > 0) { 00114 return 0; 00115 } 00116 00117 /* Form inv(U)*inv(U)' or inv(L)'*inv(L). */ 00118 00119 clauum_(uplo, n, &a[a_offset], lda, info); 00120 00121 return 0; 00122 00123 /* End of CPOTRI */ 00124 00125 } /* cpotri_ */