00001 /* claqsy.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int claqsy_(char *uplo, integer *n, complex *a, integer *lda, 00017 real *s, real *scond, real *amax, char *equed) 00018 { 00019 /* System generated locals */ 00020 integer a_dim1, a_offset, i__1, i__2, i__3, i__4; 00021 real r__1; 00022 complex q__1; 00023 00024 /* Local variables */ 00025 integer i__, j; 00026 real cj, large; 00027 extern logical lsame_(char *, char *); 00028 real small; 00029 extern doublereal slamch_(char *); 00030 00031 00032 /* -- LAPACK auxiliary routine (version 3.2) -- */ 00033 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00034 /* November 2006 */ 00035 00036 /* .. Scalar Arguments .. */ 00037 /* .. */ 00038 /* .. Array Arguments .. */ 00039 /* .. */ 00040 00041 /* Purpose */ 00042 /* ======= */ 00043 00044 /* CLAQSY equilibrates a symmetric matrix A using the scaling factors */ 00045 /* in the vector S. */ 00046 00047 /* Arguments */ 00048 /* ========= */ 00049 00050 /* UPLO (input) CHARACTER*1 */ 00051 /* Specifies whether the upper or lower triangular part of the */ 00052 /* symmetric matrix A is stored. */ 00053 /* = 'U': Upper triangular */ 00054 /* = 'L': Lower triangular */ 00055 00056 /* N (input) INTEGER */ 00057 /* The order of the matrix A. N >= 0. */ 00058 00059 /* A (input/output) COMPLEX array, dimension (LDA,N) */ 00060 /* On entry, the symmetric matrix A. If UPLO = 'U', the leading */ 00061 /* n by n upper triangular part of A contains the upper */ 00062 /* triangular part of the matrix A, and the strictly lower */ 00063 /* triangular part of A is not referenced. If UPLO = 'L', the */ 00064 /* leading n by n lower triangular part of A contains the lower */ 00065 /* triangular part of the matrix A, and the strictly upper */ 00066 /* triangular part of A is not referenced. */ 00067 00068 /* On exit, if EQUED = 'Y', the equilibrated matrix: */ 00069 /* diag(S) * A * diag(S). */ 00070 00071 /* LDA (input) INTEGER */ 00072 /* The leading dimension of the array A. LDA >= max(N,1). */ 00073 00074 /* S (input) REAL array, dimension (N) */ 00075 /* The scale factors for A. */ 00076 00077 /* SCOND (input) REAL */ 00078 /* Ratio of the smallest S(i) to the largest S(i). */ 00079 00080 /* AMAX (input) REAL */ 00081 /* Absolute value of largest matrix entry. */ 00082 00083 /* EQUED (output) CHARACTER*1 */ 00084 /* Specifies whether or not equilibration was done. */ 00085 /* = 'N': No equilibration. */ 00086 /* = 'Y': Equilibration was done, i.e., A has been replaced by */ 00087 /* diag(S) * A * diag(S). */ 00088 00089 /* Internal Parameters */ 00090 /* =================== */ 00091 00092 /* THRESH is a threshold value used to decide if scaling should be done */ 00093 /* based on the ratio of the scaling factors. If SCOND < THRESH, */ 00094 /* scaling is done. */ 00095 00096 /* LARGE and SMALL are threshold values used to decide if scaling should */ 00097 /* be done based on the absolute size of the largest matrix element. */ 00098 /* If AMAX > LARGE or AMAX < SMALL, scaling is done. */ 00099 00100 /* ===================================================================== */ 00101 00102 /* .. Parameters .. */ 00103 /* .. */ 00104 /* .. Local Scalars .. */ 00105 /* .. */ 00106 /* .. External Functions .. */ 00107 /* .. */ 00108 /* .. Executable Statements .. */ 00109 00110 /* Quick return if possible */ 00111 00112 /* Parameter adjustments */ 00113 a_dim1 = *lda; 00114 a_offset = 1 + a_dim1; 00115 a -= a_offset; 00116 --s; 00117 00118 /* Function Body */ 00119 if (*n <= 0) { 00120 *(unsigned char *)equed = 'N'; 00121 return 0; 00122 } 00123 00124 /* Initialize LARGE and SMALL. */ 00125 00126 small = slamch_("Safe minimum") / slamch_("Precision"); 00127 large = 1.f / small; 00128 00129 if (*scond >= .1f && *amax >= small && *amax <= large) { 00130 00131 /* No equilibration */ 00132 00133 *(unsigned char *)equed = 'N'; 00134 } else { 00135 00136 /* Replace A by diag(S) * A * diag(S). */ 00137 00138 if (lsame_(uplo, "U")) { 00139 00140 /* Upper triangle of A is stored. */ 00141 00142 i__1 = *n; 00143 for (j = 1; j <= i__1; ++j) { 00144 cj = s[j]; 00145 i__2 = j; 00146 for (i__ = 1; i__ <= i__2; ++i__) { 00147 i__3 = i__ + j * a_dim1; 00148 r__1 = cj * s[i__]; 00149 i__4 = i__ + j * a_dim1; 00150 q__1.r = r__1 * a[i__4].r, q__1.i = r__1 * a[i__4].i; 00151 a[i__3].r = q__1.r, a[i__3].i = q__1.i; 00152 /* L10: */ 00153 } 00154 /* L20: */ 00155 } 00156 } else { 00157 00158 /* Lower triangle of A is stored. */ 00159 00160 i__1 = *n; 00161 for (j = 1; j <= i__1; ++j) { 00162 cj = s[j]; 00163 i__2 = *n; 00164 for (i__ = j; i__ <= i__2; ++i__) { 00165 i__3 = i__ + j * a_dim1; 00166 r__1 = cj * s[i__]; 00167 i__4 = i__ + j * a_dim1; 00168 q__1.r = r__1 * a[i__4].r, q__1.i = r__1 * a[i__4].i; 00169 a[i__3].r = q__1.r, a[i__3].i = q__1.i; 00170 /* L30: */ 00171 } 00172 /* L40: */ 00173 } 00174 } 00175 *(unsigned char *)equed = 'Y'; 00176 } 00177 00178 return 0; 00179 00180 /* End of CLAQSY */ 00181 00182 } /* claqsy_ */