00001 /* claqsb.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int claqsb_(char *uplo, integer *n, integer *kd, complex *ab, 00017 integer *ldab, real *s, real *scond, real *amax, char *equed) 00018 { 00019 /* System generated locals */ 00020 integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4; 00021 real r__1; 00022 complex q__1; 00023 00024 /* Local variables */ 00025 integer i__, j; 00026 real cj, large; 00027 extern logical lsame_(char *, char *); 00028 real small; 00029 extern doublereal slamch_(char *); 00030 00031 00032 /* -- LAPACK auxiliary routine (version 3.2) -- */ 00033 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00034 /* November 2006 */ 00035 00036 /* .. Scalar Arguments .. */ 00037 /* .. */ 00038 /* .. Array Arguments .. */ 00039 /* .. */ 00040 00041 /* Purpose */ 00042 /* ======= */ 00043 00044 /* CLAQSB equilibrates a symmetric band matrix A using the scaling */ 00045 /* factors in the vector S. */ 00046 00047 /* Arguments */ 00048 /* ========= */ 00049 00050 /* UPLO (input) CHARACTER*1 */ 00051 /* Specifies whether the upper or lower triangular part of the */ 00052 /* symmetric matrix A is stored. */ 00053 /* = 'U': Upper triangular */ 00054 /* = 'L': Lower triangular */ 00055 00056 /* N (input) INTEGER */ 00057 /* The order of the matrix A. N >= 0. */ 00058 00059 /* KD (input) INTEGER */ 00060 /* The number of super-diagonals of the matrix A if UPLO = 'U', */ 00061 /* or the number of sub-diagonals if UPLO = 'L'. KD >= 0. */ 00062 00063 /* AB (input/output) COMPLEX array, dimension (LDAB,N) */ 00064 /* On entry, the upper or lower triangle of the symmetric band */ 00065 /* matrix A, stored in the first KD+1 rows of the array. The */ 00066 /* j-th column of A is stored in the j-th column of the array AB */ 00067 /* as follows: */ 00068 /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ 00069 /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ 00070 00071 /* On exit, if INFO = 0, the triangular factor U or L from the */ 00072 /* Cholesky factorization A = U'*U or A = L*L' of the band */ 00073 /* matrix A, in the same storage format as A. */ 00074 00075 /* LDAB (input) INTEGER */ 00076 /* The leading dimension of the array AB. LDAB >= KD+1. */ 00077 00078 /* S (input) REAL array, dimension (N) */ 00079 /* The scale factors for A. */ 00080 00081 /* SCOND (input) REAL */ 00082 /* Ratio of the smallest S(i) to the largest S(i). */ 00083 00084 /* AMAX (input) REAL */ 00085 /* Absolute value of largest matrix entry. */ 00086 00087 /* EQUED (output) CHARACTER*1 */ 00088 /* Specifies whether or not equilibration was done. */ 00089 /* = 'N': No equilibration. */ 00090 /* = 'Y': Equilibration was done, i.e., A has been replaced by */ 00091 /* diag(S) * A * diag(S). */ 00092 00093 /* Internal Parameters */ 00094 /* =================== */ 00095 00096 /* THRESH is a threshold value used to decide if scaling should be done */ 00097 /* based on the ratio of the scaling factors. If SCOND < THRESH, */ 00098 /* scaling is done. */ 00099 00100 /* LARGE and SMALL are threshold values used to decide if scaling should */ 00101 /* be done based on the absolute size of the largest matrix element. */ 00102 /* If AMAX > LARGE or AMAX < SMALL, scaling is done. */ 00103 00104 /* ===================================================================== */ 00105 00106 /* .. Parameters .. */ 00107 /* .. */ 00108 /* .. Local Scalars .. */ 00109 /* .. */ 00110 /* .. External Functions .. */ 00111 /* .. */ 00112 /* .. Intrinsic Functions .. */ 00113 /* .. */ 00114 /* .. Executable Statements .. */ 00115 00116 /* Quick return if possible */ 00117 00118 /* Parameter adjustments */ 00119 ab_dim1 = *ldab; 00120 ab_offset = 1 + ab_dim1; 00121 ab -= ab_offset; 00122 --s; 00123 00124 /* Function Body */ 00125 if (*n <= 0) { 00126 *(unsigned char *)equed = 'N'; 00127 return 0; 00128 } 00129 00130 /* Initialize LARGE and SMALL. */ 00131 00132 small = slamch_("Safe minimum") / slamch_("Precision"); 00133 large = 1.f / small; 00134 00135 if (*scond >= .1f && *amax >= small && *amax <= large) { 00136 00137 /* No equilibration */ 00138 00139 *(unsigned char *)equed = 'N'; 00140 } else { 00141 00142 /* Replace A by diag(S) * A * diag(S). */ 00143 00144 if (lsame_(uplo, "U")) { 00145 00146 /* Upper triangle of A is stored in band format. */ 00147 00148 i__1 = *n; 00149 for (j = 1; j <= i__1; ++j) { 00150 cj = s[j]; 00151 /* Computing MAX */ 00152 i__2 = 1, i__3 = j - *kd; 00153 i__4 = j; 00154 for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { 00155 i__2 = *kd + 1 + i__ - j + j * ab_dim1; 00156 r__1 = cj * s[i__]; 00157 i__3 = *kd + 1 + i__ - j + j * ab_dim1; 00158 q__1.r = r__1 * ab[i__3].r, q__1.i = r__1 * ab[i__3].i; 00159 ab[i__2].r = q__1.r, ab[i__2].i = q__1.i; 00160 /* L10: */ 00161 } 00162 /* L20: */ 00163 } 00164 } else { 00165 00166 /* Lower triangle of A is stored. */ 00167 00168 i__1 = *n; 00169 for (j = 1; j <= i__1; ++j) { 00170 cj = s[j]; 00171 /* Computing MIN */ 00172 i__2 = *n, i__3 = j + *kd; 00173 i__4 = min(i__2,i__3); 00174 for (i__ = j; i__ <= i__4; ++i__) { 00175 i__2 = i__ + 1 - j + j * ab_dim1; 00176 r__1 = cj * s[i__]; 00177 i__3 = i__ + 1 - j + j * ab_dim1; 00178 q__1.r = r__1 * ab[i__3].r, q__1.i = r__1 * ab[i__3].i; 00179 ab[i__2].r = q__1.r, ab[i__2].i = q__1.i; 00180 /* L30: */ 00181 } 00182 /* L40: */ 00183 } 00184 } 00185 *(unsigned char *)equed = 'Y'; 00186 } 00187 00188 return 0; 00189 00190 /* End of CLAQSB */ 00191 00192 } /* claqsb_ */