00001 /* claed7.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__2 = 2; 00019 static integer c__1 = 1; 00020 static integer c_n1 = -1; 00021 00022 /* Subroutine */ int claed7_(integer *n, integer *cutpnt, integer *qsiz, 00023 integer *tlvls, integer *curlvl, integer *curpbm, real *d__, complex * 00024 q, integer *ldq, real *rho, integer *indxq, real *qstore, integer * 00025 qptr, integer *prmptr, integer *perm, integer *givptr, integer * 00026 givcol, real *givnum, complex *work, real *rwork, integer *iwork, 00027 integer *info) 00028 { 00029 /* System generated locals */ 00030 integer q_dim1, q_offset, i__1, i__2; 00031 00032 /* Builtin functions */ 00033 integer pow_ii(integer *, integer *); 00034 00035 /* Local variables */ 00036 integer i__, k, n1, n2, iq, iw, iz, ptr, indx, curr, indxc, indxp; 00037 extern /* Subroutine */ int claed8_(integer *, integer *, integer *, 00038 complex *, integer *, real *, real *, integer *, real *, real *, 00039 complex *, integer *, real *, integer *, integer *, integer *, 00040 integer *, integer *, integer *, real *, integer *), slaed9_( 00041 integer *, integer *, integer *, integer *, real *, real *, 00042 integer *, real *, real *, real *, real *, integer *, integer *), 00043 slaeda_(integer *, integer *, integer *, integer *, integer *, 00044 integer *, integer *, integer *, real *, real *, integer *, real * 00045 , real *, integer *); 00046 integer idlmda; 00047 extern /* Subroutine */ int clacrm_(integer *, integer *, complex *, 00048 integer *, real *, integer *, complex *, integer *, real *), 00049 xerbla_(char *, integer *), slamrg_(integer *, integer *, 00050 real *, integer *, integer *, integer *); 00051 integer coltyp; 00052 00053 00054 /* -- LAPACK routine (version 3.2) -- */ 00055 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00056 /* November 2006 */ 00057 00058 /* .. Scalar Arguments .. */ 00059 /* .. */ 00060 /* .. Array Arguments .. */ 00061 /* .. */ 00062 00063 /* Purpose */ 00064 /* ======= */ 00065 00066 /* CLAED7 computes the updated eigensystem of a diagonal */ 00067 /* matrix after modification by a rank-one symmetric matrix. This */ 00068 /* routine is used only for the eigenproblem which requires all */ 00069 /* eigenvalues and optionally eigenvectors of a dense or banded */ 00070 /* Hermitian matrix that has been reduced to tridiagonal form. */ 00071 00072 /* T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */ 00073 00074 /* where Z = Q'u, u is a vector of length N with ones in the */ 00075 /* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */ 00076 00077 /* The eigenvectors of the original matrix are stored in Q, and the */ 00078 /* eigenvalues are in D. The algorithm consists of three stages: */ 00079 00080 /* The first stage consists of deflating the size of the problem */ 00081 /* when there are multiple eigenvalues or if there is a zero in */ 00082 /* the Z vector. For each such occurence the dimension of the */ 00083 /* secular equation problem is reduced by one. This stage is */ 00084 /* performed by the routine SLAED2. */ 00085 00086 /* The second stage consists of calculating the updated */ 00087 /* eigenvalues. This is done by finding the roots of the secular */ 00088 /* equation via the routine SLAED4 (as called by SLAED3). */ 00089 /* This routine also calculates the eigenvectors of the current */ 00090 /* problem. */ 00091 00092 /* The final stage consists of computing the updated eigenvectors */ 00093 /* directly using the updated eigenvalues. The eigenvectors for */ 00094 /* the current problem are multiplied with the eigenvectors from */ 00095 /* the overall problem. */ 00096 00097 /* Arguments */ 00098 /* ========= */ 00099 00100 /* N (input) INTEGER */ 00101 /* The dimension of the symmetric tridiagonal matrix. N >= 0. */ 00102 00103 /* CUTPNT (input) INTEGER */ 00104 /* Contains the location of the last eigenvalue in the leading */ 00105 /* sub-matrix. min(1,N) <= CUTPNT <= N. */ 00106 00107 /* QSIZ (input) INTEGER */ 00108 /* The dimension of the unitary matrix used to reduce */ 00109 /* the full matrix to tridiagonal form. QSIZ >= N. */ 00110 00111 /* TLVLS (input) INTEGER */ 00112 /* The total number of merging levels in the overall divide and */ 00113 /* conquer tree. */ 00114 00115 /* CURLVL (input) INTEGER */ 00116 /* The current level in the overall merge routine, */ 00117 /* 0 <= curlvl <= tlvls. */ 00118 00119 /* CURPBM (input) INTEGER */ 00120 /* The current problem in the current level in the overall */ 00121 /* merge routine (counting from upper left to lower right). */ 00122 00123 /* D (input/output) REAL array, dimension (N) */ 00124 /* On entry, the eigenvalues of the rank-1-perturbed matrix. */ 00125 /* On exit, the eigenvalues of the repaired matrix. */ 00126 00127 /* Q (input/output) COMPLEX array, dimension (LDQ,N) */ 00128 /* On entry, the eigenvectors of the rank-1-perturbed matrix. */ 00129 /* On exit, the eigenvectors of the repaired tridiagonal matrix. */ 00130 00131 /* LDQ (input) INTEGER */ 00132 /* The leading dimension of the array Q. LDQ >= max(1,N). */ 00133 00134 /* RHO (input) REAL */ 00135 /* Contains the subdiagonal element used to create the rank-1 */ 00136 /* modification. */ 00137 00138 /* INDXQ (output) INTEGER array, dimension (N) */ 00139 /* This contains the permutation which will reintegrate the */ 00140 /* subproblem just solved back into sorted order, */ 00141 /* ie. D( INDXQ( I = 1, N ) ) will be in ascending order. */ 00142 00143 /* IWORK (workspace) INTEGER array, dimension (4*N) */ 00144 00145 /* RWORK (workspace) REAL array, */ 00146 /* dimension (3*N+2*QSIZ*N) */ 00147 00148 /* WORK (workspace) COMPLEX array, dimension (QSIZ*N) */ 00149 00150 /* QSTORE (input/output) REAL array, dimension (N**2+1) */ 00151 /* Stores eigenvectors of submatrices encountered during */ 00152 /* divide and conquer, packed together. QPTR points to */ 00153 /* beginning of the submatrices. */ 00154 00155 /* QPTR (input/output) INTEGER array, dimension (N+2) */ 00156 /* List of indices pointing to beginning of submatrices stored */ 00157 /* in QSTORE. The submatrices are numbered starting at the */ 00158 /* bottom left of the divide and conquer tree, from left to */ 00159 /* right and bottom to top. */ 00160 00161 /* PRMPTR (input) INTEGER array, dimension (N lg N) */ 00162 /* Contains a list of pointers which indicate where in PERM a */ 00163 /* level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */ 00164 /* indicates the size of the permutation and also the size of */ 00165 /* the full, non-deflated problem. */ 00166 00167 /* PERM (input) INTEGER array, dimension (N lg N) */ 00168 /* Contains the permutations (from deflation and sorting) to be */ 00169 /* applied to each eigenblock. */ 00170 00171 /* GIVPTR (input) INTEGER array, dimension (N lg N) */ 00172 /* Contains a list of pointers which indicate where in GIVCOL a */ 00173 /* level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */ 00174 /* indicates the number of Givens rotations. */ 00175 00176 /* GIVCOL (input) INTEGER array, dimension (2, N lg N) */ 00177 /* Each pair of numbers indicates a pair of columns to take place */ 00178 /* in a Givens rotation. */ 00179 00180 /* GIVNUM (input) REAL array, dimension (2, N lg N) */ 00181 /* Each number indicates the S value to be used in the */ 00182 /* corresponding Givens rotation. */ 00183 00184 /* INFO (output) INTEGER */ 00185 /* = 0: successful exit. */ 00186 /* < 0: if INFO = -i, the i-th argument had an illegal value. */ 00187 /* > 0: if INFO = 1, an eigenvalue did not converge */ 00188 00189 /* ===================================================================== */ 00190 00191 /* .. Local Scalars .. */ 00192 /* .. */ 00193 /* .. External Subroutines .. */ 00194 /* .. */ 00195 /* .. Intrinsic Functions .. */ 00196 /* .. */ 00197 /* .. Executable Statements .. */ 00198 00199 /* Test the input parameters. */ 00200 00201 /* Parameter adjustments */ 00202 --d__; 00203 q_dim1 = *ldq; 00204 q_offset = 1 + q_dim1; 00205 q -= q_offset; 00206 --indxq; 00207 --qstore; 00208 --qptr; 00209 --prmptr; 00210 --perm; 00211 --givptr; 00212 givcol -= 3; 00213 givnum -= 3; 00214 --work; 00215 --rwork; 00216 --iwork; 00217 00218 /* Function Body */ 00219 *info = 0; 00220 00221 /* IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN */ 00222 /* INFO = -1 */ 00223 /* ELSE IF( N.LT.0 ) THEN */ 00224 if (*n < 0) { 00225 *info = -1; 00226 } else if (min(1,*n) > *cutpnt || *n < *cutpnt) { 00227 *info = -2; 00228 } else if (*qsiz < *n) { 00229 *info = -3; 00230 } else if (*ldq < max(1,*n)) { 00231 *info = -9; 00232 } 00233 if (*info != 0) { 00234 i__1 = -(*info); 00235 xerbla_("CLAED7", &i__1); 00236 return 0; 00237 } 00238 00239 /* Quick return if possible */ 00240 00241 if (*n == 0) { 00242 return 0; 00243 } 00244 00245 /* The following values are for bookkeeping purposes only. They are */ 00246 /* integer pointers which indicate the portion of the workspace */ 00247 /* used by a particular array in SLAED2 and SLAED3. */ 00248 00249 iz = 1; 00250 idlmda = iz + *n; 00251 iw = idlmda + *n; 00252 iq = iw + *n; 00253 00254 indx = 1; 00255 indxc = indx + *n; 00256 coltyp = indxc + *n; 00257 indxp = coltyp + *n; 00258 00259 /* Form the z-vector which consists of the last row of Q_1 and the */ 00260 /* first row of Q_2. */ 00261 00262 ptr = pow_ii(&c__2, tlvls) + 1; 00263 i__1 = *curlvl - 1; 00264 for (i__ = 1; i__ <= i__1; ++i__) { 00265 i__2 = *tlvls - i__; 00266 ptr += pow_ii(&c__2, &i__2); 00267 /* L10: */ 00268 } 00269 curr = ptr + *curpbm; 00270 slaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], & 00271 givcol[3], &givnum[3], &qstore[1], &qptr[1], &rwork[iz], &rwork[ 00272 iz + *n], info); 00273 00274 /* When solving the final problem, we no longer need the stored data, */ 00275 /* so we will overwrite the data from this level onto the previously */ 00276 /* used storage space. */ 00277 00278 if (*curlvl == *tlvls) { 00279 qptr[curr] = 1; 00280 prmptr[curr] = 1; 00281 givptr[curr] = 1; 00282 } 00283 00284 /* Sort and Deflate eigenvalues. */ 00285 00286 claed8_(&k, n, qsiz, &q[q_offset], ldq, &d__[1], rho, cutpnt, &rwork[iz], 00287 &rwork[idlmda], &work[1], qsiz, &rwork[iw], &iwork[indxp], &iwork[ 00288 indx], &indxq[1], &perm[prmptr[curr]], &givptr[curr + 1], &givcol[ 00289 (givptr[curr] << 1) + 1], &givnum[(givptr[curr] << 1) + 1], info); 00290 prmptr[curr + 1] = prmptr[curr] + *n; 00291 givptr[curr + 1] += givptr[curr]; 00292 00293 /* Solve Secular Equation. */ 00294 00295 if (k != 0) { 00296 slaed9_(&k, &c__1, &k, n, &d__[1], &rwork[iq], &k, rho, &rwork[idlmda] 00297 , &rwork[iw], &qstore[qptr[curr]], &k, info); 00298 clacrm_(qsiz, &k, &work[1], qsiz, &qstore[qptr[curr]], &k, &q[ 00299 q_offset], ldq, &rwork[iq]); 00300 /* Computing 2nd power */ 00301 i__1 = k; 00302 qptr[curr + 1] = qptr[curr] + i__1 * i__1; 00303 if (*info != 0) { 00304 return 0; 00305 } 00306 00307 /* Prepare the INDXQ sorting premutation. */ 00308 00309 n1 = k; 00310 n2 = *n - k; 00311 slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]); 00312 } else { 00313 qptr[curr + 1] = qptr[curr]; 00314 i__1 = *n; 00315 for (i__ = 1; i__ <= i__1; ++i__) { 00316 indxq[i__] = i__; 00317 /* L20: */ 00318 } 00319 } 00320 00321 return 0; 00322 00323 /* End of CLAED7 */ 00324 00325 } /* claed7_ */