cla_porfsx_extended.c
Go to the documentation of this file.
00001 /* cla_porfsx_extended.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static complex c_b11 = {-1.f,0.f};
00020 static complex c_b12 = {1.f,0.f};
00021 static real c_b33 = 1.f;
00022 
00023 /* Subroutine */ int cla_porfsx_extended__(integer *prec_type__, char *uplo, 
00024         integer *n, integer *nrhs, complex *a, integer *lda, complex *af, 
00025         integer *ldaf, logical *colequ, real *c__, complex *b, integer *ldb, 
00026         complex *y, integer *ldy, real *berr_out__, integer *n_norms__, real *
00027         err_bnds_norm__, real *err_bnds_comp__, complex *res, real *ayb, 
00028         complex *dy, complex *y_tail__, real *rcond, integer *ithresh, real *
00029         rthresh, real *dz_ub__, logical *ignore_cwise__, integer *info, 
00030         ftnlen uplo_len)
00031 {
00032     /* System generated locals */
00033     integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, y_dim1, 
00034             y_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 
00035             err_bnds_comp_dim1, err_bnds_comp_offset, i__1, i__2, i__3, i__4;
00036     real r__1, r__2;
00037 
00038     /* Builtin functions */
00039     double r_imag(complex *);
00040 
00041     /* Local variables */
00042     real dxratmax, dzratmax;
00043     integer i__, j;
00044     extern /* Subroutine */ int cla_heamv__(integer *, integer *, real *, 
00045             complex *, integer *, complex *, integer *, real *, real *, 
00046             integer *);
00047     logical incr_prec__;
00048     real prev_dz_z__, yk, final_dx_x__;
00049     extern /* Subroutine */ int cla_wwaddw__(integer *, complex *, complex *, 
00050             complex *);
00051     real final_dz_z__, prevnormdx;
00052     integer cnt;
00053     real dyk, eps, incr_thresh__, dx_x__, dz_z__;
00054     extern /* Subroutine */ int cla_lin_berr__(integer *, integer *, integer *
00055             , complex *, real *, real *);
00056     real ymin;
00057     extern /* Subroutine */ int blas_chemv_x__(integer *, integer *, complex *
00058             , complex *, integer *, complex *, integer *, complex *, complex *
00059             , integer *, integer *);
00060     integer y_prec_state__, uplo2;
00061     extern /* Subroutine */ int blas_chemv2_x__(integer *, integer *, complex 
00062             *, complex *, integer *, complex *, complex *, integer *, complex 
00063             *, complex *, integer *, integer *);
00064     extern logical lsame_(char *, char *);
00065     extern /* Subroutine */ int chemv_(char *, integer *, complex *, complex *
00066 , integer *, complex *, integer *, complex *, complex *, integer *
00067 ), ccopy_(integer *, complex *, integer *, complex *, 
00068             integer *);
00069     real dxrat, dzrat;
00070     extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, 
00071             integer *, complex *, integer *);
00072     real normx, normy;
00073     extern doublereal slamch_(char *);
00074     real normdx;
00075     extern /* Subroutine */ int cpotrs_(char *, integer *, integer *, complex 
00076             *, integer *, complex *, integer *, integer *);
00077     real hugeval;
00078     extern integer ilauplo_(char *);
00079     integer x_state__, z_state__;
00080 
00081 
00082 /*     -- LAPACK routine (version 3.2.1)                                 -- */
00083 /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
00084 /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
00085 /*     -- April 2009                                                   -- */
00086 
00087 /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
00088 /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */
00089 
00090 /*     .. */
00091 /*     .. Scalar Arguments .. */
00092 /*     .. */
00093 /*     .. Array Arguments .. */
00094 /*     .. */
00095 
00096 /*  Purpose */
00097 /*  ======= */
00098 
00099 /*  CLA_PORFSX_EXTENDED improves the computed solution to a system of */
00100 /*  linear equations by performing extra-precise iterative refinement */
00101 /*  and provides error bounds and backward error estimates for the solution. */
00102 /*  This subroutine is called by CPORFSX to perform iterative refinement. */
00103 /*  In addition to normwise error bound, the code provides maximum */
00104 /*  componentwise error bound if possible. See comments for ERR_BNDS_NORM */
00105 /*  and ERR_BNDS_COMP for details of the error bounds. Note that this */
00106 /*  subroutine is only resonsible for setting the second fields of */
00107 /*  ERR_BNDS_NORM and ERR_BNDS_COMP. */
00108 
00109 /*  Arguments */
00110 /*  ========= */
00111 
00112 /*     PREC_TYPE      (input) INTEGER */
00113 /*     Specifies the intermediate precision to be used in refinement. */
00114 /*     The value is defined by ILAPREC(P) where P is a CHARACTER and */
00115 /*     P    = 'S':  Single */
00116 /*          = 'D':  Double */
00117 /*          = 'I':  Indigenous */
00118 /*          = 'X', 'E':  Extra */
00119 
00120 /*     UPLO    (input) CHARACTER*1 */
00121 /*       = 'U':  Upper triangle of A is stored; */
00122 /*       = 'L':  Lower triangle of A is stored. */
00123 
00124 /*     N              (input) INTEGER */
00125 /*     The number of linear equations, i.e., the order of the */
00126 /*     matrix A.  N >= 0. */
00127 
00128 /*     NRHS           (input) INTEGER */
00129 /*     The number of right-hand-sides, i.e., the number of columns of the */
00130 /*     matrix B. */
00131 
00132 /*     A              (input) COMPLEX array, dimension (LDA,N) */
00133 /*     On entry, the N-by-N matrix A. */
00134 
00135 /*     LDA            (input) INTEGER */
00136 /*     The leading dimension of the array A.  LDA >= max(1,N). */
00137 
00138 /*     AF             (input) COMPLEX array, dimension (LDAF,N) */
00139 /*     The triangular factor U or L from the Cholesky factorization */
00140 /*     A = U**T*U or A = L*L**T, as computed by CPOTRF. */
00141 
00142 /*     LDAF           (input) INTEGER */
00143 /*     The leading dimension of the array AF.  LDAF >= max(1,N). */
00144 
00145 /*     COLEQU         (input) LOGICAL */
00146 /*     If .TRUE. then column equilibration was done to A before calling */
00147 /*     this routine. This is needed to compute the solution and error */
00148 /*     bounds correctly. */
00149 
00150 /*     C              (input) REAL array, dimension (N) */
00151 /*     The column scale factors for A. If COLEQU = .FALSE., C */
00152 /*     is not accessed. If C is input, each element of C should be a power */
00153 /*     of the radix to ensure a reliable solution and error estimates. */
00154 /*     Scaling by powers of the radix does not cause rounding errors unless */
00155 /*     the result underflows or overflows. Rounding errors during scaling */
00156 /*     lead to refining with a matrix that is not equivalent to the */
00157 /*     input matrix, producing error estimates that may not be */
00158 /*     reliable. */
00159 
00160 /*     B              (input) COMPLEX array, dimension (LDB,NRHS) */
00161 /*     The right-hand-side matrix B. */
00162 
00163 /*     LDB            (input) INTEGER */
00164 /*     The leading dimension of the array B.  LDB >= max(1,N). */
00165 
00166 /*     Y              (input/output) COMPLEX array, dimension */
00167 /*                    (LDY,NRHS) */
00168 /*     On entry, the solution matrix X, as computed by CPOTRS. */
00169 /*     On exit, the improved solution matrix Y. */
00170 
00171 /*     LDY            (input) INTEGER */
00172 /*     The leading dimension of the array Y.  LDY >= max(1,N). */
00173 
00174 /*     BERR_OUT       (output) REAL array, dimension (NRHS) */
00175 /*     On exit, BERR_OUT(j) contains the componentwise relative backward */
00176 /*     error for right-hand-side j from the formula */
00177 /*         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
00178 /*     where abs(Z) is the componentwise absolute value of the matrix */
00179 /*     or vector Z. This is computed by CLA_LIN_BERR. */
00180 
00181 /*     N_NORMS        (input) INTEGER */
00182 /*     Determines which error bounds to return (see ERR_BNDS_NORM */
00183 /*     and ERR_BNDS_COMP). */
00184 /*     If N_NORMS >= 1 return normwise error bounds. */
00185 /*     If N_NORMS >= 2 return componentwise error bounds. */
00186 
00187 /*     ERR_BNDS_NORM  (input/output) REAL array, dimension */
00188 /*                    (NRHS, N_ERR_BNDS) */
00189 /*     For each right-hand side, this array contains information about */
00190 /*     various error bounds and condition numbers corresponding to the */
00191 /*     normwise relative error, which is defined as follows: */
00192 
00193 /*     Normwise relative error in the ith solution vector: */
00194 /*             max_j (abs(XTRUE(j,i) - X(j,i))) */
00195 /*            ------------------------------ */
00196 /*                  max_j abs(X(j,i)) */
00197 
00198 /*     The array is indexed by the type of error information as described */
00199 /*     below. There currently are up to three pieces of information */
00200 /*     returned. */
00201 
00202 /*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
00203 /*     right-hand side. */
00204 
00205 /*     The second index in ERR_BNDS_NORM(:,err) contains the following */
00206 /*     three fields: */
00207 /*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
00208 /*              reciprocal condition number is less than the threshold */
00209 /*              sqrt(n) * slamch('Epsilon'). */
00210 
00211 /*     err = 2 "Guaranteed" error bound: The estimated forward error, */
00212 /*              almost certainly within a factor of 10 of the true error */
00213 /*              so long as the next entry is greater than the threshold */
00214 /*              sqrt(n) * slamch('Epsilon'). This error bound should only */
00215 /*              be trusted if the previous boolean is true. */
00216 
00217 /*     err = 3  Reciprocal condition number: Estimated normwise */
00218 /*              reciprocal condition number.  Compared with the threshold */
00219 /*              sqrt(n) * slamch('Epsilon') to determine if the error */
00220 /*              estimate is "guaranteed". These reciprocal condition */
00221 /*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
00222 /*              appropriately scaled matrix Z. */
00223 /*              Let Z = S*A, where S scales each row by a power of the */
00224 /*              radix so all absolute row sums of Z are approximately 1. */
00225 
00226 /*     This subroutine is only responsible for setting the second field */
00227 /*     above. */
00228 /*     See Lapack Working Note 165 for further details and extra */
00229 /*     cautions. */
00230 
00231 /*     ERR_BNDS_COMP  (input/output) REAL array, dimension */
00232 /*                    (NRHS, N_ERR_BNDS) */
00233 /*     For each right-hand side, this array contains information about */
00234 /*     various error bounds and condition numbers corresponding to the */
00235 /*     componentwise relative error, which is defined as follows: */
00236 
00237 /*     Componentwise relative error in the ith solution vector: */
00238 /*                    abs(XTRUE(j,i) - X(j,i)) */
00239 /*             max_j ---------------------- */
00240 /*                         abs(X(j,i)) */
00241 
00242 /*     The array is indexed by the right-hand side i (on which the */
00243 /*     componentwise relative error depends), and the type of error */
00244 /*     information as described below. There currently are up to three */
00245 /*     pieces of information returned for each right-hand side. If */
00246 /*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
00247 /*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most */
00248 /*     the first (:,N_ERR_BNDS) entries are returned. */
00249 
00250 /*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
00251 /*     right-hand side. */
00252 
00253 /*     The second index in ERR_BNDS_COMP(:,err) contains the following */
00254 /*     three fields: */
00255 /*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
00256 /*              reciprocal condition number is less than the threshold */
00257 /*              sqrt(n) * slamch('Epsilon'). */
00258 
00259 /*     err = 2 "Guaranteed" error bound: The estimated forward error, */
00260 /*              almost certainly within a factor of 10 of the true error */
00261 /*              so long as the next entry is greater than the threshold */
00262 /*              sqrt(n) * slamch('Epsilon'). This error bound should only */
00263 /*              be trusted if the previous boolean is true. */
00264 
00265 /*     err = 3  Reciprocal condition number: Estimated componentwise */
00266 /*              reciprocal condition number.  Compared with the threshold */
00267 /*              sqrt(n) * slamch('Epsilon') to determine if the error */
00268 /*              estimate is "guaranteed". These reciprocal condition */
00269 /*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
00270 /*              appropriately scaled matrix Z. */
00271 /*              Let Z = S*(A*diag(x)), where x is the solution for the */
00272 /*              current right-hand side and S scales each row of */
00273 /*              A*diag(x) by a power of the radix so all absolute row */
00274 /*              sums of Z are approximately 1. */
00275 
00276 /*     This subroutine is only responsible for setting the second field */
00277 /*     above. */
00278 /*     See Lapack Working Note 165 for further details and extra */
00279 /*     cautions. */
00280 
00281 /*     RES            (input) COMPLEX array, dimension (N) */
00282 /*     Workspace to hold the intermediate residual. */
00283 
00284 /*     AYB            (input) REAL array, dimension (N) */
00285 /*     Workspace. */
00286 
00287 /*     DY             (input) COMPLEX array, dimension (N) */
00288 /*     Workspace to hold the intermediate solution. */
00289 
00290 /*     Y_TAIL         (input) COMPLEX array, dimension (N) */
00291 /*     Workspace to hold the trailing bits of the intermediate solution. */
00292 
00293 /*     RCOND          (input) REAL */
00294 /*     Reciprocal scaled condition number.  This is an estimate of the */
00295 /*     reciprocal Skeel condition number of the matrix A after */
00296 /*     equilibration (if done).  If this is less than the machine */
00297 /*     precision (in particular, if it is zero), the matrix is singular */
00298 /*     to working precision.  Note that the error may still be small even */
00299 /*     if this number is very small and the matrix appears ill- */
00300 /*     conditioned. */
00301 
00302 /*     ITHRESH        (input) INTEGER */
00303 /*     The maximum number of residual computations allowed for */
00304 /*     refinement. The default is 10. For 'aggressive' set to 100 to */
00305 /*     permit convergence using approximate factorizations or */
00306 /*     factorizations other than LU. If the factorization uses a */
00307 /*     technique other than Gaussian elimination, the guarantees in */
00308 /*     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy. */
00309 
00310 /*     RTHRESH        (input) REAL */
00311 /*     Determines when to stop refinement if the error estimate stops */
00312 /*     decreasing. Refinement will stop when the next solution no longer */
00313 /*     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is */
00314 /*     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The */
00315 /*     default value is 0.5. For 'aggressive' set to 0.9 to permit */
00316 /*     convergence on extremely ill-conditioned matrices. See LAWN 165 */
00317 /*     for more details. */
00318 
00319 /*     DZ_UB          (input) REAL */
00320 /*     Determines when to start considering componentwise convergence. */
00321 /*     Componentwise convergence is only considered after each component */
00322 /*     of the solution Y is stable, which we definte as the relative */
00323 /*     change in each component being less than DZ_UB. The default value */
00324 /*     is 0.25, requiring the first bit to be stable. See LAWN 165 for */
00325 /*     more details. */
00326 
00327 /*     IGNORE_CWISE   (input) LOGICAL */
00328 /*     If .TRUE. then ignore componentwise convergence. Default value */
00329 /*     is .FALSE.. */
00330 
00331 /*     INFO           (output) INTEGER */
00332 /*       = 0:  Successful exit. */
00333 /*       < 0:  if INFO = -i, the ith argument to CPOTRS had an illegal */
00334 /*             value */
00335 
00336 /*  ===================================================================== */
00337 
00338 /*     .. Local Scalars .. */
00339 /*     .. */
00340 /*     .. Parameters .. */
00341 /*     .. */
00342 /*     .. External Functions .. */
00343 /*     .. */
00344 /*     .. External Subroutines .. */
00345 /*     .. */
00346 /*     .. Intrinsic Functions .. */
00347 /*     .. */
00348 /*     .. Statement Functions .. */
00349 /*     .. */
00350 /*     .. Statement Function Definitions .. */
00351 /*     .. */
00352 /*     .. Executable Statements .. */
00353 
00354     /* Parameter adjustments */
00355     err_bnds_comp_dim1 = *nrhs;
00356     err_bnds_comp_offset = 1 + err_bnds_comp_dim1;
00357     err_bnds_comp__ -= err_bnds_comp_offset;
00358     err_bnds_norm_dim1 = *nrhs;
00359     err_bnds_norm_offset = 1 + err_bnds_norm_dim1;
00360     err_bnds_norm__ -= err_bnds_norm_offset;
00361     a_dim1 = *lda;
00362     a_offset = 1 + a_dim1;
00363     a -= a_offset;
00364     af_dim1 = *ldaf;
00365     af_offset = 1 + af_dim1;
00366     af -= af_offset;
00367     --c__;
00368     b_dim1 = *ldb;
00369     b_offset = 1 + b_dim1;
00370     b -= b_offset;
00371     y_dim1 = *ldy;
00372     y_offset = 1 + y_dim1;
00373     y -= y_offset;
00374     --berr_out__;
00375     --res;
00376     --ayb;
00377     --dy;
00378     --y_tail__;
00379 
00380     /* Function Body */
00381     if (*info != 0) {
00382         return 0;
00383     }
00384     eps = slamch_("Epsilon");
00385     hugeval = slamch_("Overflow");
00386 /*     Force HUGEVAL to Inf */
00387     hugeval *= hugeval;
00388 /*     Using HUGEVAL may lead to spurious underflows. */
00389     incr_thresh__ = (real) (*n) * eps;
00390     if (lsame_(uplo, "L")) {
00391         uplo2 = ilauplo_("L");
00392     } else {
00393         uplo2 = ilauplo_("U");
00394     }
00395     i__1 = *nrhs;
00396     for (j = 1; j <= i__1; ++j) {
00397         y_prec_state__ = 1;
00398         if (y_prec_state__ == 2) {
00399             i__2 = *n;
00400             for (i__ = 1; i__ <= i__2; ++i__) {
00401                 i__3 = i__;
00402                 y_tail__[i__3].r = 0.f, y_tail__[i__3].i = 0.f;
00403             }
00404         }
00405         dxrat = 0.f;
00406         dxratmax = 0.f;
00407         dzrat = 0.f;
00408         dzratmax = 0.f;
00409         final_dx_x__ = hugeval;
00410         final_dz_z__ = hugeval;
00411         prevnormdx = hugeval;
00412         prev_dz_z__ = hugeval;
00413         dz_z__ = hugeval;
00414         dx_x__ = hugeval;
00415         x_state__ = 1;
00416         z_state__ = 0;
00417         incr_prec__ = FALSE_;
00418         i__2 = *ithresh;
00419         for (cnt = 1; cnt <= i__2; ++cnt) {
00420 
00421 /*         Compute residual RES = B_s - op(A_s) * Y, */
00422 /*             op(A) = A, A**T, or A**H depending on TRANS (and type). */
00423 
00424             ccopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
00425             if (y_prec_state__ == 0) {
00426                 chemv_(uplo, n, &c_b11, &a[a_offset], lda, &y[j * y_dim1 + 1], 
00427                          &c__1, &c_b12, &res[1], &c__1);
00428             } else if (y_prec_state__ == 1) {
00429                 blas_chemv_x__(&uplo2, n, &c_b11, &a[a_offset], lda, &y[j * 
00430                         y_dim1 + 1], &c__1, &c_b12, &res[1], &c__1, 
00431                         prec_type__);
00432             } else {
00433                 blas_chemv2_x__(&uplo2, n, &c_b11, &a[a_offset], lda, &y[j * 
00434                         y_dim1 + 1], &y_tail__[1], &c__1, &c_b12, &res[1], &
00435                         c__1, prec_type__);
00436             }
00437 /*         XXX: RES is no longer needed. */
00438             ccopy_(n, &res[1], &c__1, &dy[1], &c__1);
00439             cpotrs_(uplo, n, nrhs, &af[af_offset], ldaf, &dy[1], n, info);
00440 
00441 /*         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT. */
00442 
00443             normx = 0.f;
00444             normy = 0.f;
00445             normdx = 0.f;
00446             dz_z__ = 0.f;
00447             ymin = hugeval;
00448             i__3 = *n;
00449             for (i__ = 1; i__ <= i__3; ++i__) {
00450                 i__4 = i__ + j * y_dim1;
00451                 yk = (r__1 = y[i__4].r, dabs(r__1)) + (r__2 = r_imag(&y[i__ + 
00452                         j * y_dim1]), dabs(r__2));
00453                 i__4 = i__;
00454                 dyk = (r__1 = dy[i__4].r, dabs(r__1)) + (r__2 = r_imag(&dy[
00455                         i__]), dabs(r__2));
00456                 if (yk != 0.f) {
00457 /* Computing MAX */
00458                     r__1 = dz_z__, r__2 = dyk / yk;
00459                     dz_z__ = dmax(r__1,r__2);
00460                 } else if (dyk != 0.f) {
00461                     dz_z__ = hugeval;
00462                 }
00463                 ymin = dmin(ymin,yk);
00464                 normy = dmax(normy,yk);
00465                 if (*colequ) {
00466 /* Computing MAX */
00467                     r__1 = normx, r__2 = yk * c__[i__];
00468                     normx = dmax(r__1,r__2);
00469 /* Computing MAX */
00470                     r__1 = normdx, r__2 = dyk * c__[i__];
00471                     normdx = dmax(r__1,r__2);
00472                 } else {
00473                     normx = normy;
00474                     normdx = dmax(normdx,dyk);
00475                 }
00476             }
00477             if (normx != 0.f) {
00478                 dx_x__ = normdx / normx;
00479             } else if (normdx == 0.f) {
00480                 dx_x__ = 0.f;
00481             } else {
00482                 dx_x__ = hugeval;
00483             }
00484             dxrat = normdx / prevnormdx;
00485             dzrat = dz_z__ / prev_dz_z__;
00486 
00487 /*         Check termination criteria. */
00488 
00489             if (ymin * *rcond < incr_thresh__ * normy && y_prec_state__ < 2) {
00490                 incr_prec__ = TRUE_;
00491             }
00492             if (x_state__ == 3 && dxrat <= *rthresh) {
00493                 x_state__ = 1;
00494             }
00495             if (x_state__ == 1) {
00496                 if (dx_x__ <= eps) {
00497                     x_state__ = 2;
00498                 } else if (dxrat > *rthresh) {
00499                     if (y_prec_state__ != 2) {
00500                         incr_prec__ = TRUE_;
00501                     } else {
00502                         x_state__ = 3;
00503                     }
00504                 } else {
00505                     if (dxrat > dxratmax) {
00506                         dxratmax = dxrat;
00507                     }
00508                 }
00509                 if (x_state__ > 1) {
00510                     final_dx_x__ = dx_x__;
00511                 }
00512             }
00513             if (z_state__ == 0 && dz_z__ <= *dz_ub__) {
00514                 z_state__ = 1;
00515             }
00516             if (z_state__ == 3 && dzrat <= *rthresh) {
00517                 z_state__ = 1;
00518             }
00519             if (z_state__ == 1) {
00520                 if (dz_z__ <= eps) {
00521                     z_state__ = 2;
00522                 } else if (dz_z__ > *dz_ub__) {
00523                     z_state__ = 0;
00524                     dzratmax = 0.f;
00525                     final_dz_z__ = hugeval;
00526                 } else if (dzrat > *rthresh) {
00527                     if (y_prec_state__ != 2) {
00528                         incr_prec__ = TRUE_;
00529                     } else {
00530                         z_state__ = 3;
00531                     }
00532                 } else {
00533                     if (dzrat > dzratmax) {
00534                         dzratmax = dzrat;
00535                     }
00536                 }
00537                 if (z_state__ > 1) {
00538                     final_dz_z__ = dz_z__;
00539                 }
00540             }
00541             if (x_state__ != 1 && (*ignore_cwise__ || z_state__ != 1)) {
00542                 goto L666;
00543             }
00544             if (incr_prec__) {
00545                 incr_prec__ = FALSE_;
00546                 ++y_prec_state__;
00547                 i__3 = *n;
00548                 for (i__ = 1; i__ <= i__3; ++i__) {
00549                     i__4 = i__;
00550                     y_tail__[i__4].r = 0.f, y_tail__[i__4].i = 0.f;
00551                 }
00552             }
00553             prevnormdx = normdx;
00554             prev_dz_z__ = dz_z__;
00555 
00556 /*           Update soluton. */
00557 
00558             if (y_prec_state__ < 2) {
00559                 caxpy_(n, &c_b12, &dy[1], &c__1, &y[j * y_dim1 + 1], &c__1);
00560             } else {
00561                 cla_wwaddw__(n, &y[j * y_dim1 + 1], &y_tail__[1], &dy[1]);
00562             }
00563         }
00564 /*        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT. */
00565 L666:
00566 
00567 /*     Set final_* when cnt hits ithresh. */
00568 
00569         if (x_state__ == 1) {
00570             final_dx_x__ = dx_x__;
00571         }
00572         if (z_state__ == 1) {
00573             final_dz_z__ = dz_z__;
00574         }
00575 
00576 /*     Compute error bounds. */
00577 
00578         if (*n_norms__ >= 1) {
00579             err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = final_dx_x__ / (
00580                     1 - dxratmax);
00581         }
00582         if (*n_norms__ >= 2) {
00583             err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = final_dz_z__ / (
00584                     1 - dzratmax);
00585         }
00586 
00587 /*     Compute componentwise relative backward error from formula */
00588 /*         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
00589 /*     where abs(Z) is the componentwise absolute value of the matrix */
00590 /*     or vector Z. */
00591 
00592 /*        Compute residual RES = B_s - op(A_s) * Y, */
00593 /*            op(A) = A, A**T, or A**H depending on TRANS (and type). */
00594 
00595         ccopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
00596         chemv_(uplo, n, &c_b11, &a[a_offset], lda, &y[j * y_dim1 + 1], &c__1, 
00597                 &c_b12, &res[1], &c__1);
00598         i__2 = *n;
00599         for (i__ = 1; i__ <= i__2; ++i__) {
00600             i__3 = i__ + j * b_dim1;
00601             ayb[i__] = (r__1 = b[i__3].r, dabs(r__1)) + (r__2 = r_imag(&b[i__ 
00602                     + j * b_dim1]), dabs(r__2));
00603         }
00604 
00605 /*     Compute abs(op(A_s))*abs(Y) + abs(B_s). */
00606 
00607         cla_heamv__(&uplo2, n, &c_b33, &a[a_offset], lda, &y[j * y_dim1 + 1], 
00608                 &c__1, &c_b33, &ayb[1], &c__1);
00609         cla_lin_berr__(n, n, &c__1, &res[1], &ayb[1], &berr_out__[j]);
00610 
00611 /*     End of loop for each RHS. */
00612 
00613     }
00614 
00615     return 0;
00616 } /* cla_porfsx_extended__ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:29