00001 /* cheevr.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__10 = 10; 00019 static integer c__1 = 1; 00020 static integer c__2 = 2; 00021 static integer c__3 = 3; 00022 static integer c__4 = 4; 00023 static integer c_n1 = -1; 00024 00025 /* Subroutine */ int cheevr_(char *jobz, char *range, char *uplo, integer *n, 00026 complex *a, integer *lda, real *vl, real *vu, integer *il, integer * 00027 iu, real *abstol, integer *m, real *w, complex *z__, integer *ldz, 00028 integer *isuppz, complex *work, integer *lwork, real *rwork, integer * 00029 lrwork, integer *iwork, integer *liwork, integer *info) 00030 { 00031 /* System generated locals */ 00032 integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2; 00033 real r__1, r__2; 00034 00035 /* Builtin functions */ 00036 double sqrt(doublereal); 00037 00038 /* Local variables */ 00039 integer i__, j, nb, jj; 00040 real eps, vll, vuu, tmp1, anrm; 00041 integer imax; 00042 real rmin, rmax; 00043 logical test; 00044 integer itmp1, indrd, indre; 00045 real sigma; 00046 extern logical lsame_(char *, char *); 00047 integer iinfo; 00048 extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); 00049 char order[1]; 00050 integer indwk; 00051 extern /* Subroutine */ int cswap_(integer *, complex *, integer *, 00052 complex *, integer *); 00053 integer lwmin; 00054 logical lower; 00055 extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 00056 integer *); 00057 logical wantz, alleig, indeig; 00058 integer iscale, ieeeok, indibl, indrdd, indifl, indree; 00059 logical valeig; 00060 extern doublereal slamch_(char *); 00061 extern /* Subroutine */ int chetrd_(char *, integer *, complex *, integer 00062 *, real *, real *, complex *, complex *, integer *, integer *), csscal_(integer *, real *, complex *, integer *); 00063 real safmin; 00064 extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 00065 integer *, integer *); 00066 extern /* Subroutine */ int xerbla_(char *, integer *); 00067 real abstll, bignum; 00068 integer indtau, indisp; 00069 extern /* Subroutine */ int cstein_(integer *, real *, real *, integer *, 00070 real *, integer *, integer *, complex *, integer *, real *, 00071 integer *, integer *, integer *); 00072 integer indiwo, indwkn; 00073 extern doublereal clansy_(char *, char *, integer *, complex *, integer *, 00074 real *); 00075 extern /* Subroutine */ int cstemr_(char *, char *, integer *, real *, 00076 real *, real *, real *, integer *, integer *, integer *, real *, 00077 complex *, integer *, integer *, integer *, logical *, real *, 00078 integer *, integer *, integer *, integer *); 00079 integer indrwk, liwmin; 00080 logical tryrac; 00081 extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *); 00082 integer lrwmin, llwrkn, llwork, nsplit; 00083 real smlnum; 00084 extern /* Subroutine */ int cunmtr_(char *, char *, char *, integer *, 00085 integer *, complex *, integer *, complex *, complex *, integer *, 00086 complex *, integer *, integer *), sstebz_( 00087 char *, char *, integer *, real *, real *, integer *, integer *, 00088 real *, real *, real *, integer *, integer *, real *, integer *, 00089 integer *, real *, integer *, integer *); 00090 logical lquery; 00091 integer lwkopt, llrwork; 00092 00093 00094 /* -- LAPACK driver routine (version 3.2) -- */ 00095 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00096 /* November 2006 */ 00097 00098 /* .. Scalar Arguments .. */ 00099 /* .. */ 00100 /* .. Array Arguments .. */ 00101 /* .. */ 00102 00103 /* Purpose */ 00104 /* ======= */ 00105 00106 /* CHEEVR computes selected eigenvalues and, optionally, eigenvectors */ 00107 /* of a complex Hermitian matrix A. Eigenvalues and eigenvectors can */ 00108 /* be selected by specifying either a range of values or a range of */ 00109 /* indices for the desired eigenvalues. */ 00110 00111 /* CHEEVR first reduces the matrix A to tridiagonal form T with a call */ 00112 /* to CHETRD. Then, whenever possible, CHEEVR calls CSTEMR to compute */ 00113 /* the eigenspectrum using Relatively Robust Representations. CSTEMR */ 00114 /* computes eigenvalues by the dqds algorithm, while orthogonal */ 00115 /* eigenvectors are computed from various "good" L D L^T representations */ 00116 /* (also known as Relatively Robust Representations). Gram-Schmidt */ 00117 /* orthogonalization is avoided as far as possible. More specifically, */ 00118 /* the various steps of the algorithm are as follows. */ 00119 00120 /* For each unreduced block (submatrix) of T, */ 00121 /* (a) Compute T - sigma I = L D L^T, so that L and D */ 00122 /* define all the wanted eigenvalues to high relative accuracy. */ 00123 /* This means that small relative changes in the entries of D and L */ 00124 /* cause only small relative changes in the eigenvalues and */ 00125 /* eigenvectors. The standard (unfactored) representation of the */ 00126 /* tridiagonal matrix T does not have this property in general. */ 00127 /* (b) Compute the eigenvalues to suitable accuracy. */ 00128 /* If the eigenvectors are desired, the algorithm attains full */ 00129 /* accuracy of the computed eigenvalues only right before */ 00130 /* the corresponding vectors have to be computed, see steps c) and d). */ 00131 /* (c) For each cluster of close eigenvalues, select a new */ 00132 /* shift close to the cluster, find a new factorization, and refine */ 00133 /* the shifted eigenvalues to suitable accuracy. */ 00134 /* (d) For each eigenvalue with a large enough relative separation compute */ 00135 /* the corresponding eigenvector by forming a rank revealing twisted */ 00136 /* factorization. Go back to (c) for any clusters that remain. */ 00137 00138 /* The desired accuracy of the output can be specified by the input */ 00139 /* parameter ABSTOL. */ 00140 00141 /* For more details, see DSTEMR's documentation and: */ 00142 /* - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */ 00143 /* to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */ 00144 /* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */ 00145 /* - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */ 00146 /* Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */ 00147 /* 2004. Also LAPACK Working Note 154. */ 00148 /* - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */ 00149 /* tridiagonal eigenvalue/eigenvector problem", */ 00150 /* Computer Science Division Technical Report No. UCB/CSD-97-971, */ 00151 /* UC Berkeley, May 1997. */ 00152 00153 00154 /* Note 1 : CHEEVR calls CSTEMR when the full spectrum is requested */ 00155 /* on machines which conform to the ieee-754 floating point standard. */ 00156 /* CHEEVR calls SSTEBZ and CSTEIN on non-ieee machines and */ 00157 /* when partial spectrum requests are made. */ 00158 00159 /* Normal execution of CSTEMR may create NaNs and infinities and */ 00160 /* hence may abort due to a floating point exception in environments */ 00161 /* which do not handle NaNs and infinities in the ieee standard default */ 00162 /* manner. */ 00163 00164 /* Arguments */ 00165 /* ========= */ 00166 00167 /* JOBZ (input) CHARACTER*1 */ 00168 /* = 'N': Compute eigenvalues only; */ 00169 /* = 'V': Compute eigenvalues and eigenvectors. */ 00170 00171 /* RANGE (input) CHARACTER*1 */ 00172 /* = 'A': all eigenvalues will be found. */ 00173 /* = 'V': all eigenvalues in the half-open interval (VL,VU] */ 00174 /* will be found. */ 00175 /* = 'I': the IL-th through IU-th eigenvalues will be found. */ 00176 /* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and */ 00177 /* ********* CSTEIN are called */ 00178 00179 /* UPLO (input) CHARACTER*1 */ 00180 /* = 'U': Upper triangle of A is stored; */ 00181 /* = 'L': Lower triangle of A is stored. */ 00182 00183 /* N (input) INTEGER */ 00184 /* The order of the matrix A. N >= 0. */ 00185 00186 /* A (input/output) COMPLEX array, dimension (LDA, N) */ 00187 /* On entry, the Hermitian matrix A. If UPLO = 'U', the */ 00188 /* leading N-by-N upper triangular part of A contains the */ 00189 /* upper triangular part of the matrix A. If UPLO = 'L', */ 00190 /* the leading N-by-N lower triangular part of A contains */ 00191 /* the lower triangular part of the matrix A. */ 00192 /* On exit, the lower triangle (if UPLO='L') or the upper */ 00193 /* triangle (if UPLO='U') of A, including the diagonal, is */ 00194 /* destroyed. */ 00195 00196 /* LDA (input) INTEGER */ 00197 /* The leading dimension of the array A. LDA >= max(1,N). */ 00198 00199 /* VL (input) REAL */ 00200 /* VU (input) REAL */ 00201 /* If RANGE='V', the lower and upper bounds of the interval to */ 00202 /* be searched for eigenvalues. VL < VU. */ 00203 /* Not referenced if RANGE = 'A' or 'I'. */ 00204 00205 /* IL (input) INTEGER */ 00206 /* IU (input) INTEGER */ 00207 /* If RANGE='I', the indices (in ascending order) of the */ 00208 /* smallest and largest eigenvalues to be returned. */ 00209 /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ 00210 /* Not referenced if RANGE = 'A' or 'V'. */ 00211 00212 /* ABSTOL (input) REAL */ 00213 /* The absolute error tolerance for the eigenvalues. */ 00214 /* An approximate eigenvalue is accepted as converged */ 00215 /* when it is determined to lie in an interval [a,b] */ 00216 /* of width less than or equal to */ 00217 00218 /* ABSTOL + EPS * max( |a|,|b| ) , */ 00219 00220 /* where EPS is the machine precision. If ABSTOL is less than */ 00221 /* or equal to zero, then EPS*|T| will be used in its place, */ 00222 /* where |T| is the 1-norm of the tridiagonal matrix obtained */ 00223 /* by reducing A to tridiagonal form. */ 00224 00225 /* See "Computing Small Singular Values of Bidiagonal Matrices */ 00226 /* with Guaranteed High Relative Accuracy," by Demmel and */ 00227 /* Kahan, LAPACK Working Note #3. */ 00228 00229 /* If high relative accuracy is important, set ABSTOL to */ 00230 /* SLAMCH( 'Safe minimum' ). Doing so will guarantee that */ 00231 /* eigenvalues are computed to high relative accuracy when */ 00232 /* possible in future releases. The current code does not */ 00233 /* make any guarantees about high relative accuracy, but */ 00234 /* furutre releases will. See J. Barlow and J. Demmel, */ 00235 /* "Computing Accurate Eigensystems of Scaled Diagonally */ 00236 /* Dominant Matrices", LAPACK Working Note #7, for a discussion */ 00237 /* of which matrices define their eigenvalues to high relative */ 00238 /* accuracy. */ 00239 00240 /* M (output) INTEGER */ 00241 /* The total number of eigenvalues found. 0 <= M <= N. */ 00242 /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ 00243 00244 /* W (output) REAL array, dimension (N) */ 00245 /* The first M elements contain the selected eigenvalues in */ 00246 /* ascending order. */ 00247 00248 /* Z (output) COMPLEX array, dimension (LDZ, max(1,M)) */ 00249 /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ 00250 /* contain the orthonormal eigenvectors of the matrix A */ 00251 /* corresponding to the selected eigenvalues, with the i-th */ 00252 /* column of Z holding the eigenvector associated with W(i). */ 00253 /* If JOBZ = 'N', then Z is not referenced. */ 00254 /* Note: the user must ensure that at least max(1,M) columns are */ 00255 /* supplied in the array Z; if RANGE = 'V', the exact value of M */ 00256 /* is not known in advance and an upper bound must be used. */ 00257 00258 /* LDZ (input) INTEGER */ 00259 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00260 /* JOBZ = 'V', LDZ >= max(1,N). */ 00261 00262 /* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) */ 00263 /* The support of the eigenvectors in Z, i.e., the indices */ 00264 /* indicating the nonzero elements in Z. The i-th eigenvector */ 00265 /* is nonzero only in elements ISUPPZ( 2*i-1 ) through */ 00266 /* ISUPPZ( 2*i ). */ 00267 /* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */ 00268 00269 /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ 00270 /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ 00271 00272 /* LWORK (input) INTEGER */ 00273 /* The length of the array WORK. LWORK >= max(1,2*N). */ 00274 /* For optimal efficiency, LWORK >= (NB+1)*N, */ 00275 /* where NB is the max of the blocksize for CHETRD and for */ 00276 /* CUNMTR as returned by ILAENV. */ 00277 00278 /* If LWORK = -1, then a workspace query is assumed; the routine */ 00279 /* only calculates the optimal sizes of the WORK, RWORK and */ 00280 /* IWORK arrays, returns these values as the first entries of */ 00281 /* the WORK, RWORK and IWORK arrays, and no error message */ 00282 /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ 00283 00284 /* RWORK (workspace/output) REAL array, dimension (MAX(1,LRWORK)) */ 00285 /* On exit, if INFO = 0, RWORK(1) returns the optimal */ 00286 /* (and minimal) LRWORK. */ 00287 00288 /* LRWORK (input) INTEGER */ 00289 /* The length of the array RWORK. LRWORK >= max(1,24*N). */ 00290 00291 /* If LRWORK = -1, then a workspace query is assumed; the */ 00292 /* routine only calculates the optimal sizes of the WORK, RWORK */ 00293 /* and IWORK arrays, returns these values as the first entries */ 00294 /* of the WORK, RWORK and IWORK arrays, and no error message */ 00295 /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ 00296 00297 /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ 00298 /* On exit, if INFO = 0, IWORK(1) returns the optimal */ 00299 /* (and minimal) LIWORK. */ 00300 00301 /* LIWORK (input) INTEGER */ 00302 /* The dimension of the array IWORK. LIWORK >= max(1,10*N). */ 00303 00304 /* If LIWORK = -1, then a workspace query is assumed; the */ 00305 /* routine only calculates the optimal sizes of the WORK, RWORK */ 00306 /* and IWORK arrays, returns these values as the first entries */ 00307 /* of the WORK, RWORK and IWORK arrays, and no error message */ 00308 /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ 00309 00310 /* INFO (output) INTEGER */ 00311 /* = 0: successful exit */ 00312 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00313 /* > 0: Internal error */ 00314 00315 /* Further Details */ 00316 /* =============== */ 00317 00318 /* Based on contributions by */ 00319 /* Inderjit Dhillon, IBM Almaden, USA */ 00320 /* Osni Marques, LBNL/NERSC, USA */ 00321 /* Ken Stanley, Computer Science Division, University of */ 00322 /* California at Berkeley, USA */ 00323 /* Jason Riedy, Computer Science Division, University of */ 00324 /* California at Berkeley, USA */ 00325 00326 /* ===================================================================== */ 00327 00328 /* .. Parameters .. */ 00329 /* .. */ 00330 /* .. Local Scalars .. */ 00331 /* .. */ 00332 /* .. External Functions .. */ 00333 /* .. */ 00334 /* .. External Subroutines .. */ 00335 /* .. */ 00336 /* .. Intrinsic Functions .. */ 00337 /* .. */ 00338 /* .. Executable Statements .. */ 00339 00340 /* Test the input parameters. */ 00341 00342 /* Parameter adjustments */ 00343 a_dim1 = *lda; 00344 a_offset = 1 + a_dim1; 00345 a -= a_offset; 00346 --w; 00347 z_dim1 = *ldz; 00348 z_offset = 1 + z_dim1; 00349 z__ -= z_offset; 00350 --isuppz; 00351 --work; 00352 --rwork; 00353 --iwork; 00354 00355 /* Function Body */ 00356 ieeeok = ilaenv_(&c__10, "CHEEVR", "N", &c__1, &c__2, &c__3, &c__4); 00357 00358 lower = lsame_(uplo, "L"); 00359 wantz = lsame_(jobz, "V"); 00360 alleig = lsame_(range, "A"); 00361 valeig = lsame_(range, "V"); 00362 indeig = lsame_(range, "I"); 00363 00364 lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1; 00365 00366 /* Computing MAX */ 00367 i__1 = 1, i__2 = *n * 24; 00368 lrwmin = max(i__1,i__2); 00369 /* Computing MAX */ 00370 i__1 = 1, i__2 = *n * 10; 00371 liwmin = max(i__1,i__2); 00372 /* Computing MAX */ 00373 i__1 = 1, i__2 = *n << 1; 00374 lwmin = max(i__1,i__2); 00375 00376 *info = 0; 00377 if (! (wantz || lsame_(jobz, "N"))) { 00378 *info = -1; 00379 } else if (! (alleig || valeig || indeig)) { 00380 *info = -2; 00381 } else if (! (lower || lsame_(uplo, "U"))) { 00382 *info = -3; 00383 } else if (*n < 0) { 00384 *info = -4; 00385 } else if (*lda < max(1,*n)) { 00386 *info = -6; 00387 } else { 00388 if (valeig) { 00389 if (*n > 0 && *vu <= *vl) { 00390 *info = -8; 00391 } 00392 } else if (indeig) { 00393 if (*il < 1 || *il > max(1,*n)) { 00394 *info = -9; 00395 } else if (*iu < min(*n,*il) || *iu > *n) { 00396 *info = -10; 00397 } 00398 } 00399 } 00400 if (*info == 0) { 00401 if (*ldz < 1 || wantz && *ldz < *n) { 00402 *info = -15; 00403 } 00404 } 00405 00406 if (*info == 0) { 00407 nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1); 00408 /* Computing MAX */ 00409 i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMTR", uplo, n, &c_n1, &c_n1, & 00410 c_n1); 00411 nb = max(i__1,i__2); 00412 /* Computing MAX */ 00413 i__1 = (nb + 1) * *n; 00414 lwkopt = max(i__1,lwmin); 00415 work[1].r = (real) lwkopt, work[1].i = 0.f; 00416 rwork[1] = (real) lrwmin; 00417 iwork[1] = liwmin; 00418 00419 if (*lwork < lwmin && ! lquery) { 00420 *info = -18; 00421 } else if (*lrwork < lrwmin && ! lquery) { 00422 *info = -20; 00423 } else if (*liwork < liwmin && ! lquery) { 00424 *info = -22; 00425 } 00426 } 00427 00428 if (*info != 0) { 00429 i__1 = -(*info); 00430 xerbla_("CHEEVR", &i__1); 00431 return 0; 00432 } else if (lquery) { 00433 return 0; 00434 } 00435 00436 /* Quick return if possible */ 00437 00438 *m = 0; 00439 if (*n == 0) { 00440 work[1].r = 1.f, work[1].i = 0.f; 00441 return 0; 00442 } 00443 00444 if (*n == 1) { 00445 work[1].r = 2.f, work[1].i = 0.f; 00446 if (alleig || indeig) { 00447 *m = 1; 00448 i__1 = a_dim1 + 1; 00449 w[1] = a[i__1].r; 00450 } else { 00451 i__1 = a_dim1 + 1; 00452 i__2 = a_dim1 + 1; 00453 if (*vl < a[i__1].r && *vu >= a[i__2].r) { 00454 *m = 1; 00455 i__1 = a_dim1 + 1; 00456 w[1] = a[i__1].r; 00457 } 00458 } 00459 if (wantz) { 00460 i__1 = z_dim1 + 1; 00461 z__[i__1].r = 1.f, z__[i__1].i = 0.f; 00462 } 00463 return 0; 00464 } 00465 00466 /* Get machine constants. */ 00467 00468 safmin = slamch_("Safe minimum"); 00469 eps = slamch_("Precision"); 00470 smlnum = safmin / eps; 00471 bignum = 1.f / smlnum; 00472 rmin = sqrt(smlnum); 00473 /* Computing MIN */ 00474 r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin)); 00475 rmax = dmin(r__1,r__2); 00476 00477 /* Scale matrix to allowable range, if necessary. */ 00478 00479 iscale = 0; 00480 abstll = *abstol; 00481 if (valeig) { 00482 vll = *vl; 00483 vuu = *vu; 00484 } 00485 anrm = clansy_("M", uplo, n, &a[a_offset], lda, &rwork[1]); 00486 if (anrm > 0.f && anrm < rmin) { 00487 iscale = 1; 00488 sigma = rmin / anrm; 00489 } else if (anrm > rmax) { 00490 iscale = 1; 00491 sigma = rmax / anrm; 00492 } 00493 if (iscale == 1) { 00494 if (lower) { 00495 i__1 = *n; 00496 for (j = 1; j <= i__1; ++j) { 00497 i__2 = *n - j + 1; 00498 csscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1); 00499 /* L10: */ 00500 } 00501 } else { 00502 i__1 = *n; 00503 for (j = 1; j <= i__1; ++j) { 00504 csscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1); 00505 /* L20: */ 00506 } 00507 } 00508 if (*abstol > 0.f) { 00509 abstll = *abstol * sigma; 00510 } 00511 if (valeig) { 00512 vll = *vl * sigma; 00513 vuu = *vu * sigma; 00514 } 00515 } 00516 /* Initialize indices into workspaces. Note: The IWORK indices are */ 00517 /* used only if SSTERF or CSTEMR fail. */ 00518 /* WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the */ 00519 /* elementary reflectors used in CHETRD. */ 00520 indtau = 1; 00521 /* INDWK is the starting offset of the remaining complex workspace, */ 00522 /* and LLWORK is the remaining complex workspace size. */ 00523 indwk = indtau + *n; 00524 llwork = *lwork - indwk + 1; 00525 /* RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal */ 00526 /* entries. */ 00527 indrd = 1; 00528 /* RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the */ 00529 /* tridiagonal matrix from CHETRD. */ 00530 indre = indrd + *n; 00531 /* RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over */ 00532 /* -written by CSTEMR (the SSTERF path copies the diagonal to W). */ 00533 indrdd = indre + *n; 00534 /* RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over */ 00535 /* -written while computing the eigenvalues in SSTERF and CSTEMR. */ 00536 indree = indrdd + *n; 00537 /* INDRWK is the starting offset of the left-over real workspace, and */ 00538 /* LLRWORK is the remaining workspace size. */ 00539 indrwk = indree + *n; 00540 llrwork = *lrwork - indrwk + 1; 00541 /* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and */ 00542 /* stores the block indices of each of the M<=N eigenvalues. */ 00543 indibl = 1; 00544 /* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and */ 00545 /* stores the starting and finishing indices of each block. */ 00546 indisp = indibl + *n; 00547 /* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */ 00548 /* that corresponding to eigenvectors that fail to converge in */ 00549 /* SSTEIN. This information is discarded; if any fail, the driver */ 00550 /* returns INFO > 0. */ 00551 indifl = indisp + *n; 00552 /* INDIWO is the offset of the remaining integer workspace. */ 00553 indiwo = indisp + *n; 00554 00555 /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */ 00556 00557 chetrd_(uplo, n, &a[a_offset], lda, &rwork[indrd], &rwork[indre], &work[ 00558 indtau], &work[indwk], &llwork, &iinfo); 00559 00560 /* If all eigenvalues are desired */ 00561 /* then call SSTERF or CSTEMR and CUNMTR. */ 00562 00563 test = FALSE_; 00564 if (indeig) { 00565 if (*il == 1 && *iu == *n) { 00566 test = TRUE_; 00567 } 00568 } 00569 if ((alleig || test) && ieeeok == 1) { 00570 if (! wantz) { 00571 scopy_(n, &rwork[indrd], &c__1, &w[1], &c__1); 00572 i__1 = *n - 1; 00573 scopy_(&i__1, &rwork[indre], &c__1, &rwork[indree], &c__1); 00574 ssterf_(n, &w[1], &rwork[indree], info); 00575 } else { 00576 i__1 = *n - 1; 00577 scopy_(&i__1, &rwork[indre], &c__1, &rwork[indree], &c__1); 00578 scopy_(n, &rwork[indrd], &c__1, &rwork[indrdd], &c__1); 00579 00580 if (*abstol <= *n * 2.f * eps) { 00581 tryrac = TRUE_; 00582 } else { 00583 tryrac = FALSE_; 00584 } 00585 cstemr_(jobz, "A", n, &rwork[indrdd], &rwork[indree], vl, vu, il, 00586 iu, m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, 00587 &rwork[indrwk], &llrwork, &iwork[1], liwork, info); 00588 00589 /* Apply unitary matrix used in reduction to tridiagonal */ 00590 /* form to eigenvectors returned by CSTEIN. */ 00591 00592 if (wantz && *info == 0) { 00593 indwkn = indwk; 00594 llwrkn = *lwork - indwkn + 1; 00595 cunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau] 00596 , &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo); 00597 } 00598 } 00599 00600 00601 if (*info == 0) { 00602 *m = *n; 00603 goto L30; 00604 } 00605 *info = 0; 00606 } 00607 00608 /* Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */ 00609 /* Also call SSTEBZ and CSTEIN if CSTEMR fails. */ 00610 00611 if (wantz) { 00612 *(unsigned char *)order = 'B'; 00613 } else { 00614 *(unsigned char *)order = 'E'; 00615 } 00616 sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indrd], & 00617 rwork[indre], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], & 00618 rwork[indrwk], &iwork[indiwo], info); 00619 00620 if (wantz) { 00621 cstein_(n, &rwork[indrd], &rwork[indre], m, &w[1], &iwork[indibl], & 00622 iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[ 00623 indiwo], &iwork[indifl], info); 00624 00625 /* Apply unitary matrix used in reduction to tridiagonal */ 00626 /* form to eigenvectors returned by CSTEIN. */ 00627 00628 indwkn = indwk; 00629 llwrkn = *lwork - indwkn + 1; 00630 cunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[ 00631 z_offset], ldz, &work[indwkn], &llwrkn, &iinfo); 00632 } 00633 00634 /* If matrix was scaled, then rescale eigenvalues appropriately. */ 00635 00636 L30: 00637 if (iscale == 1) { 00638 if (*info == 0) { 00639 imax = *m; 00640 } else { 00641 imax = *info - 1; 00642 } 00643 r__1 = 1.f / sigma; 00644 sscal_(&imax, &r__1, &w[1], &c__1); 00645 } 00646 00647 /* If eigenvalues are not in order, then sort them, along with */ 00648 /* eigenvectors. */ 00649 00650 if (wantz) { 00651 i__1 = *m - 1; 00652 for (j = 1; j <= i__1; ++j) { 00653 i__ = 0; 00654 tmp1 = w[j]; 00655 i__2 = *m; 00656 for (jj = j + 1; jj <= i__2; ++jj) { 00657 if (w[jj] < tmp1) { 00658 i__ = jj; 00659 tmp1 = w[jj]; 00660 } 00661 /* L40: */ 00662 } 00663 00664 if (i__ != 0) { 00665 itmp1 = iwork[indibl + i__ - 1]; 00666 w[i__] = w[j]; 00667 iwork[indibl + i__ - 1] = iwork[indibl + j - 1]; 00668 w[j] = tmp1; 00669 iwork[indibl + j - 1] = itmp1; 00670 cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 00671 &c__1); 00672 } 00673 /* L50: */ 00674 } 00675 } 00676 00677 /* Set WORK(1) to optimal workspace size. */ 00678 00679 work[1].r = (real) lwkopt, work[1].i = 0.f; 00680 rwork[1] = (real) lrwmin; 00681 iwork[1] = liwmin; 00682 00683 return 0; 00684 00685 /* End of CHEEVR */ 00686 00687 } /* cheevr_ */