cgtcon.c
Go to the documentation of this file.
00001 /* cgtcon.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int cgtcon_(char *norm, integer *n, complex *dl, complex *
00021         d__, complex *du, complex *du2, integer *ipiv, real *anorm, real *
00022         rcond, complex *work, integer *info)
00023 {
00024     /* System generated locals */
00025     integer i__1, i__2;
00026 
00027     /* Local variables */
00028     integer i__, kase, kase1;
00029     extern logical lsame_(char *, char *);
00030     integer isave[3];
00031     extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real 
00032             *, integer *, integer *), xerbla_(char *, integer *);
00033     real ainvnm;
00034     logical onenrm;
00035     extern /* Subroutine */ int cgttrs_(char *, integer *, integer *, complex 
00036             *, complex *, complex *, complex *, integer *, complex *, integer 
00037             *, integer *);
00038 
00039 
00040 /*  -- LAPACK routine (version 3.2) -- */
00041 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00042 /*     November 2006 */
00043 
00044 /*     Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */
00045 
00046 /*     .. Scalar Arguments .. */
00047 /*     .. */
00048 /*     .. Array Arguments .. */
00049 /*     .. */
00050 
00051 /*  Purpose */
00052 /*  ======= */
00053 
00054 /*  CGTCON estimates the reciprocal of the condition number of a complex */
00055 /*  tridiagonal matrix A using the LU factorization as computed by */
00056 /*  CGTTRF. */
00057 
00058 /*  An estimate is obtained for norm(inv(A)), and the reciprocal of the */
00059 /*  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */
00060 
00061 /*  Arguments */
00062 /*  ========= */
00063 
00064 /*  NORM    (input) CHARACTER*1 */
00065 /*          Specifies whether the 1-norm condition number or the */
00066 /*          infinity-norm condition number is required: */
00067 /*          = '1' or 'O':  1-norm; */
00068 /*          = 'I':         Infinity-norm. */
00069 
00070 /*  N       (input) INTEGER */
00071 /*          The order of the matrix A.  N >= 0. */
00072 
00073 /*  DL      (input) COMPLEX array, dimension (N-1) */
00074 /*          The (n-1) multipliers that define the matrix L from the */
00075 /*          LU factorization of A as computed by CGTTRF. */
00076 
00077 /*  D       (input) COMPLEX array, dimension (N) */
00078 /*          The n diagonal elements of the upper triangular matrix U from */
00079 /*          the LU factorization of A. */
00080 
00081 /*  DU      (input) COMPLEX array, dimension (N-1) */
00082 /*          The (n-1) elements of the first superdiagonal of U. */
00083 
00084 /*  DU2     (input) COMPLEX array, dimension (N-2) */
00085 /*          The (n-2) elements of the second superdiagonal of U. */
00086 
00087 /*  IPIV    (input) INTEGER array, dimension (N) */
00088 /*          The pivot indices; for 1 <= i <= n, row i of the matrix was */
00089 /*          interchanged with row IPIV(i).  IPIV(i) will always be either */
00090 /*          i or i+1; IPIV(i) = i indicates a row interchange was not */
00091 /*          required. */
00092 
00093 /*  ANORM   (input) REAL */
00094 /*          If NORM = '1' or 'O', the 1-norm of the original matrix A. */
00095 /*          If NORM = 'I', the infinity-norm of the original matrix A. */
00096 
00097 /*  RCOND   (output) REAL */
00098 /*          The reciprocal of the condition number of the matrix A, */
00099 /*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */
00100 /*          estimate of the 1-norm of inv(A) computed in this routine. */
00101 
00102 /*  WORK    (workspace) COMPLEX array, dimension (2*N) */
00103 
00104 /*  INFO    (output) INTEGER */
00105 /*          = 0:  successful exit */
00106 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00107 
00108 /*  ===================================================================== */
00109 
00110 /*     .. Parameters .. */
00111 /*     .. */
00112 /*     .. Local Scalars .. */
00113 /*     .. */
00114 /*     .. Local Arrays .. */
00115 /*     .. */
00116 /*     .. External Functions .. */
00117 /*     .. */
00118 /*     .. External Subroutines .. */
00119 /*     .. */
00120 /*     .. Intrinsic Functions .. */
00121 /*     .. */
00122 /*     .. Executable Statements .. */
00123 
00124 /*     Test the input arguments. */
00125 
00126     /* Parameter adjustments */
00127     --work;
00128     --ipiv;
00129     --du2;
00130     --du;
00131     --d__;
00132     --dl;
00133 
00134     /* Function Body */
00135     *info = 0;
00136     onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
00137     if (! onenrm && ! lsame_(norm, "I")) {
00138         *info = -1;
00139     } else if (*n < 0) {
00140         *info = -2;
00141     } else if (*anorm < 0.f) {
00142         *info = -8;
00143     }
00144     if (*info != 0) {
00145         i__1 = -(*info);
00146         xerbla_("CGTCON", &i__1);
00147         return 0;
00148     }
00149 
00150 /*     Quick return if possible */
00151 
00152     *rcond = 0.f;
00153     if (*n == 0) {
00154         *rcond = 1.f;
00155         return 0;
00156     } else if (*anorm == 0.f) {
00157         return 0;
00158     }
00159 
00160 /*     Check that D(1:N) is non-zero. */
00161 
00162     i__1 = *n;
00163     for (i__ = 1; i__ <= i__1; ++i__) {
00164         i__2 = i__;
00165         if (d__[i__2].r == 0.f && d__[i__2].i == 0.f) {
00166             return 0;
00167         }
00168 /* L10: */
00169     }
00170 
00171     ainvnm = 0.f;
00172     if (onenrm) {
00173         kase1 = 1;
00174     } else {
00175         kase1 = 2;
00176     }
00177     kase = 0;
00178 L20:
00179     clacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
00180     if (kase != 0) {
00181         if (kase == kase1) {
00182 
00183 /*           Multiply by inv(U)*inv(L). */
00184 
00185             cgttrs_("No transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1]
00186 , &ipiv[1], &work[1], n, info);
00187         } else {
00188 
00189 /*           Multiply by inv(L')*inv(U'). */
00190 
00191             cgttrs_("Conjugate transpose", n, &c__1, &dl[1], &d__[1], &du[1], 
00192                     &du2[1], &ipiv[1], &work[1], n, info);
00193         }
00194         goto L20;
00195     }
00196 
00197 /*     Compute the estimate of the reciprocal condition number. */
00198 
00199     if (ainvnm != 0.f) {
00200         *rcond = 1.f / ainvnm / *anorm;
00201     }
00202 
00203     return 0;
00204 
00205 /*     End of CGTCON */
00206 
00207 } /* cgtcon_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:27