00001 /* cget04.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int cget04_(integer *n, integer *nrhs, complex *x, integer * 00021 ldx, complex *xact, integer *ldxact, real *rcond, real *resid) 00022 { 00023 /* System generated locals */ 00024 integer x_dim1, x_offset, xact_dim1, xact_offset, i__1, i__2, i__3, i__4; 00025 real r__1, r__2, r__3, r__4; 00026 complex q__1, q__2; 00027 00028 /* Builtin functions */ 00029 double r_imag(complex *); 00030 00031 /* Local variables */ 00032 integer i__, j, ix; 00033 real eps, xnorm; 00034 extern integer icamax_(integer *, complex *, integer *); 00035 real diffnm; 00036 extern doublereal slamch_(char *); 00037 00038 00039 /* -- LAPACK test routine (version 3.1) -- */ 00040 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00041 /* November 2006 */ 00042 00043 /* .. Scalar Arguments .. */ 00044 /* .. */ 00045 /* .. Array Arguments .. */ 00046 /* .. */ 00047 00048 /* Purpose */ 00049 /* ======= */ 00050 00051 /* CGET04 computes the difference between a computed solution and the */ 00052 /* true solution to a system of linear equations. */ 00053 00054 /* RESID = ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ), */ 00055 /* where RCOND is the reciprocal of the condition number and EPS is the */ 00056 /* machine epsilon. */ 00057 00058 /* Arguments */ 00059 /* ========= */ 00060 00061 /* N (input) INTEGER */ 00062 /* The number of rows of the matrices X and XACT. N >= 0. */ 00063 00064 /* NRHS (input) INTEGER */ 00065 /* The number of columns of the matrices X and XACT. NRHS >= 0. */ 00066 00067 /* X (input) COMPLEX array, dimension (LDX,NRHS) */ 00068 /* The computed solution vectors. Each vector is stored as a */ 00069 /* column of the matrix X. */ 00070 00071 /* LDX (input) INTEGER */ 00072 /* The leading dimension of the array X. LDX >= max(1,N). */ 00073 00074 /* XACT (input) COMPLEX array, dimension (LDX,NRHS) */ 00075 /* The exact solution vectors. Each vector is stored as a */ 00076 /* column of the matrix XACT. */ 00077 00078 /* LDXACT (input) INTEGER */ 00079 /* The leading dimension of the array XACT. LDXACT >= max(1,N). */ 00080 00081 /* RCOND (input) REAL */ 00082 /* The reciprocal of the condition number of the coefficient */ 00083 /* matrix in the system of equations. */ 00084 00085 /* RESID (output) REAL */ 00086 /* The maximum over the NRHS solution vectors of */ 00087 /* ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ) */ 00088 00089 /* ===================================================================== */ 00090 00091 /* .. Parameters .. */ 00092 /* .. */ 00093 /* .. Local Scalars .. */ 00094 /* .. */ 00095 /* .. External Functions .. */ 00096 /* .. */ 00097 /* .. Intrinsic Functions .. */ 00098 /* .. */ 00099 /* .. Statement Functions .. */ 00100 /* .. */ 00101 /* .. Statement Function definitions .. */ 00102 /* .. */ 00103 /* .. Executable Statements .. */ 00104 00105 /* Quick exit if N = 0 or NRHS = 0. */ 00106 00107 /* Parameter adjustments */ 00108 x_dim1 = *ldx; 00109 x_offset = 1 + x_dim1; 00110 x -= x_offset; 00111 xact_dim1 = *ldxact; 00112 xact_offset = 1 + xact_dim1; 00113 xact -= xact_offset; 00114 00115 /* Function Body */ 00116 if (*n <= 0 || *nrhs <= 0) { 00117 *resid = 0.f; 00118 return 0; 00119 } 00120 00121 /* Exit with RESID = 1/EPS if RCOND is invalid. */ 00122 00123 eps = slamch_("Epsilon"); 00124 if (*rcond < 0.f) { 00125 *resid = 1.f / eps; 00126 return 0; 00127 } 00128 00129 /* Compute the maximum of */ 00130 /* norm(X - XACT) / ( norm(XACT) * EPS ) */ 00131 /* over all the vectors X and XACT . */ 00132 00133 *resid = 0.f; 00134 i__1 = *nrhs; 00135 for (j = 1; j <= i__1; ++j) { 00136 ix = icamax_(n, &xact[j * xact_dim1 + 1], &c__1); 00137 i__2 = ix + j * xact_dim1; 00138 xnorm = (r__1 = xact[i__2].r, dabs(r__1)) + (r__2 = r_imag(&xact[ix + 00139 j * xact_dim1]), dabs(r__2)); 00140 diffnm = 0.f; 00141 i__2 = *n; 00142 for (i__ = 1; i__ <= i__2; ++i__) { 00143 i__3 = i__ + j * x_dim1; 00144 i__4 = i__ + j * xact_dim1; 00145 q__2.r = x[i__3].r - xact[i__4].r, q__2.i = x[i__3].i - xact[i__4] 00146 .i; 00147 q__1.r = q__2.r, q__1.i = q__2.i; 00148 /* Computing MAX */ 00149 r__3 = diffnm, r__4 = (r__1 = q__1.r, dabs(r__1)) + (r__2 = 00150 r_imag(&q__1), dabs(r__2)); 00151 diffnm = dmax(r__3,r__4); 00152 /* L10: */ 00153 } 00154 if (xnorm <= 0.f) { 00155 if (diffnm > 0.f) { 00156 *resid = 1.f / eps; 00157 } 00158 } else { 00159 /* Computing MAX */ 00160 r__1 = *resid, r__2 = diffnm / xnorm * *rcond; 00161 *resid = dmax(r__1,r__2); 00162 } 00163 /* L20: */ 00164 } 00165 if (*resid * eps < 1.f) { 00166 *resid /= eps; 00167 } 00168 00169 return 0; 00170 00171 /* End of CGET04 */ 00172 00173 } /* cget04_ */