cgeequb.c
Go to the documentation of this file.
00001 /* cgeequb.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int cgeequb_(integer *m, integer *n, complex *a, integer *
00017         lda, real *r__, real *c__, real *rowcnd, real *colcnd, real *amax, 
00018         integer *info)
00019 {
00020     /* System generated locals */
00021     integer a_dim1, a_offset, i__1, i__2, i__3;
00022     real r__1, r__2, r__3, r__4;
00023 
00024     /* Builtin functions */
00025     double log(doublereal), r_imag(complex *), pow_ri(real *, integer *);
00026 
00027     /* Local variables */
00028     integer i__, j;
00029     real radix, rcmin, rcmax;
00030     extern doublereal slamch_(char *);
00031     extern /* Subroutine */ int xerbla_(char *, integer *);
00032     real bignum, logrdx, smlnum;
00033 
00034 
00035 /*     -- LAPACK routine (version 3.2)                                 -- */
00036 /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
00037 /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
00038 /*     -- November 2008                                                -- */
00039 
00040 /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
00041 /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */
00042 
00043 /*     .. */
00044 /*     .. Scalar Arguments .. */
00045 /*     .. */
00046 /*     .. Array Arguments .. */
00047 /*     .. */
00048 
00049 /*  Purpose */
00050 /*  ======= */
00051 
00052 /*  CGEEQUB computes row and column scalings intended to equilibrate an */
00053 /*  M-by-N matrix A and reduce its condition number.  R returns the row */
00054 /*  scale factors and C the column scale factors, chosen to try to make */
00055 /*  the largest element in each row and column of the matrix B with */
00056 /*  elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most */
00057 /*  the radix. */
00058 
00059 /*  R(i) and C(j) are restricted to be a power of the radix between */
00060 /*  SMLNUM = smallest safe number and BIGNUM = largest safe number.  Use */
00061 /*  of these scaling factors is not guaranteed to reduce the condition */
00062 /*  number of A but works well in practice. */
00063 
00064 /*  This routine differs from CGEEQU by restricting the scaling factors */
00065 /*  to a power of the radix.  Baring over- and underflow, scaling by */
00066 /*  these factors introduces no additional rounding errors.  However, the */
00067 /*  scaled entries' magnitured are no longer approximately 1 but lie */
00068 /*  between sqrt(radix) and 1/sqrt(radix). */
00069 
00070 /*  Arguments */
00071 /*  ========= */
00072 
00073 /*  M       (input) INTEGER */
00074 /*          The number of rows of the matrix A.  M >= 0. */
00075 
00076 /*  N       (input) INTEGER */
00077 /*          The number of columns of the matrix A.  N >= 0. */
00078 
00079 /*  A       (input) COMPLEX array, dimension (LDA,N) */
00080 /*          The M-by-N matrix whose equilibration factors are */
00081 /*          to be computed. */
00082 
00083 /*  LDA     (input) INTEGER */
00084 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00085 
00086 /*  R       (output) REAL array, dimension (M) */
00087 /*          If INFO = 0 or INFO > M, R contains the row scale factors */
00088 /*          for A. */
00089 
00090 /*  C       (output) REAL array, dimension (N) */
00091 /*          If INFO = 0,  C contains the column scale factors for A. */
00092 
00093 /*  ROWCND  (output) REAL */
00094 /*          If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
00095 /*          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and */
00096 /*          AMAX is neither too large nor too small, it is not worth */
00097 /*          scaling by R. */
00098 
00099 /*  COLCND  (output) REAL */
00100 /*          If INFO = 0, COLCND contains the ratio of the smallest */
00101 /*          C(i) to the largest C(i).  If COLCND >= 0.1, it is not */
00102 /*          worth scaling by C. */
00103 
00104 /*  AMAX    (output) REAL */
00105 /*          Absolute value of largest matrix element.  If AMAX is very */
00106 /*          close to overflow or very close to underflow, the matrix */
00107 /*          should be scaled. */
00108 
00109 /*  INFO    (output) INTEGER */
00110 /*          = 0:  successful exit */
00111 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00112 /*          > 0:  if INFO = i,  and i is */
00113 /*                <= M:  the i-th row of A is exactly zero */
00114 /*                >  M:  the (i-M)-th column of A is exactly zero */
00115 
00116 /*  ===================================================================== */
00117 
00118 /*     .. Parameters .. */
00119 /*     .. */
00120 /*     .. Local Scalars .. */
00121 /*     .. */
00122 /*     .. External Functions .. */
00123 /*     .. */
00124 /*     .. External Subroutines .. */
00125 /*     .. */
00126 /*     .. Intrinsic Functions .. */
00127 /*     .. */
00128 /*     .. Statement Functions .. */
00129 /*     .. */
00130 /*     .. Statement Function definitions .. */
00131 /*     .. */
00132 /*     .. Executable Statements .. */
00133 
00134 /*     Test the input parameters. */
00135 
00136     /* Parameter adjustments */
00137     a_dim1 = *lda;
00138     a_offset = 1 + a_dim1;
00139     a -= a_offset;
00140     --r__;
00141     --c__;
00142 
00143     /* Function Body */
00144     *info = 0;
00145     if (*m < 0) {
00146         *info = -1;
00147     } else if (*n < 0) {
00148         *info = -2;
00149     } else if (*lda < max(1,*m)) {
00150         *info = -4;
00151     }
00152     if (*info != 0) {
00153         i__1 = -(*info);
00154         xerbla_("CGEEQUB", &i__1);
00155         return 0;
00156     }
00157 
00158 /*     Quick return if possible. */
00159 
00160     if (*m == 0 || *n == 0) {
00161         *rowcnd = 1.f;
00162         *colcnd = 1.f;
00163         *amax = 0.f;
00164         return 0;
00165     }
00166 
00167 /*     Get machine constants.  Assume SMLNUM is a power of the radix. */
00168 
00169     smlnum = slamch_("S");
00170     bignum = 1.f / smlnum;
00171     radix = slamch_("B");
00172     logrdx = log(radix);
00173 
00174 /*     Compute row scale factors. */
00175 
00176     i__1 = *m;
00177     for (i__ = 1; i__ <= i__1; ++i__) {
00178         r__[i__] = 0.f;
00179 /* L10: */
00180     }
00181 
00182 /*     Find the maximum element in each row. */
00183 
00184     i__1 = *n;
00185     for (j = 1; j <= i__1; ++j) {
00186         i__2 = *m;
00187         for (i__ = 1; i__ <= i__2; ++i__) {
00188 /* Computing MAX */
00189             i__3 = i__ + j * a_dim1;
00190             r__3 = r__[i__], r__4 = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = 
00191                     r_imag(&a[i__ + j * a_dim1]), dabs(r__2));
00192             r__[i__] = dmax(r__3,r__4);
00193 /* L20: */
00194         }
00195 /* L30: */
00196     }
00197     i__1 = *m;
00198     for (i__ = 1; i__ <= i__1; ++i__) {
00199         if (r__[i__] > 0.f) {
00200             i__2 = (integer) (log(r__[i__]) / logrdx);
00201             r__[i__] = pow_ri(&radix, &i__2);
00202         }
00203     }
00204 
00205 /*     Find the maximum and minimum scale factors. */
00206 
00207     rcmin = bignum;
00208     rcmax = 0.f;
00209     i__1 = *m;
00210     for (i__ = 1; i__ <= i__1; ++i__) {
00211 /* Computing MAX */
00212         r__1 = rcmax, r__2 = r__[i__];
00213         rcmax = dmax(r__1,r__2);
00214 /* Computing MIN */
00215         r__1 = rcmin, r__2 = r__[i__];
00216         rcmin = dmin(r__1,r__2);
00217 /* L40: */
00218     }
00219     *amax = rcmax;
00220 
00221     if (rcmin == 0.f) {
00222 
00223 /*        Find the first zero scale factor and return an error code. */
00224 
00225         i__1 = *m;
00226         for (i__ = 1; i__ <= i__1; ++i__) {
00227             if (r__[i__] == 0.f) {
00228                 *info = i__;
00229                 return 0;
00230             }
00231 /* L50: */
00232         }
00233     } else {
00234 
00235 /*        Invert the scale factors. */
00236 
00237         i__1 = *m;
00238         for (i__ = 1; i__ <= i__1; ++i__) {
00239 /* Computing MIN */
00240 /* Computing MAX */
00241             r__2 = r__[i__];
00242             r__1 = dmax(r__2,smlnum);
00243             r__[i__] = 1.f / dmin(r__1,bignum);
00244 /* L60: */
00245         }
00246 
00247 /*        Compute ROWCND = min(R(I)) / max(R(I)). */
00248 
00249         *rowcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum);
00250     }
00251 
00252 /*     Compute column scale factors. */
00253 
00254     i__1 = *n;
00255     for (j = 1; j <= i__1; ++j) {
00256         c__[j] = 0.f;
00257 /* L70: */
00258     }
00259 
00260 /*     Find the maximum element in each column, */
00261 /*     assuming the row scaling computed above. */
00262 
00263     i__1 = *n;
00264     for (j = 1; j <= i__1; ++j) {
00265         i__2 = *m;
00266         for (i__ = 1; i__ <= i__2; ++i__) {
00267 /* Computing MAX */
00268             i__3 = i__ + j * a_dim1;
00269             r__3 = c__[j], r__4 = ((r__1 = a[i__3].r, dabs(r__1)) + (r__2 = 
00270                     r_imag(&a[i__ + j * a_dim1]), dabs(r__2))) * r__[i__];
00271             c__[j] = dmax(r__3,r__4);
00272 /* L80: */
00273         }
00274         if (c__[j] > 0.f) {
00275             i__2 = (integer) (log(c__[j]) / logrdx);
00276             c__[j] = pow_ri(&radix, &i__2);
00277         }
00278 /* L90: */
00279     }
00280 
00281 /*     Find the maximum and minimum scale factors. */
00282 
00283     rcmin = bignum;
00284     rcmax = 0.f;
00285     i__1 = *n;
00286     for (j = 1; j <= i__1; ++j) {
00287 /* Computing MIN */
00288         r__1 = rcmin, r__2 = c__[j];
00289         rcmin = dmin(r__1,r__2);
00290 /* Computing MAX */
00291         r__1 = rcmax, r__2 = c__[j];
00292         rcmax = dmax(r__1,r__2);
00293 /* L100: */
00294     }
00295 
00296     if (rcmin == 0.f) {
00297 
00298 /*        Find the first zero scale factor and return an error code. */
00299 
00300         i__1 = *n;
00301         for (j = 1; j <= i__1; ++j) {
00302             if (c__[j] == 0.f) {
00303                 *info = *m + j;
00304                 return 0;
00305             }
00306 /* L110: */
00307         }
00308     } else {
00309 
00310 /*        Invert the scale factors. */
00311 
00312         i__1 = *n;
00313         for (j = 1; j <= i__1; ++j) {
00314 /* Computing MIN */
00315 /* Computing MAX */
00316             r__2 = c__[j];
00317             r__1 = dmax(r__2,smlnum);
00318             c__[j] = 1.f / dmin(r__1,bignum);
00319 /* L120: */
00320         }
00321 
00322 /*        Compute COLCND = min(C(J)) / max(C(J)). */
00323 
00324         *colcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum);
00325     }
00326 
00327     return 0;
00328 
00329 /*     End of CGEEQUB */
00330 
00331 } /* cgeequb_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:26