00001 /* cgbrfsx.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static logical c_true = TRUE_; 00019 static logical c_false = FALSE_; 00020 00021 /* Subroutine */ int cgbrfsx_(char *trans, char *equed, integer *n, integer * 00022 kl, integer *ku, integer *nrhs, complex *ab, integer *ldab, complex * 00023 afb, integer *ldafb, integer *ipiv, real *r__, real *c__, complex *b, 00024 integer *ldb, complex *x, integer *ldx, real *rcond, real *berr, 00025 integer *n_err_bnds__, real *err_bnds_norm__, real *err_bnds_comp__, 00026 integer *nparams, real *params, complex *work, real *rwork, integer * 00027 info) 00028 { 00029 /* System generated locals */ 00030 integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 00031 x_dim1, x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 00032 err_bnds_comp_dim1, err_bnds_comp_offset, i__1; 00033 real r__1, r__2; 00034 00035 /* Builtin functions */ 00036 double sqrt(doublereal); 00037 00038 /* Local variables */ 00039 real illrcond_thresh__, unstable_thresh__, err_lbnd__; 00040 integer ref_type__; 00041 extern integer ilatrans_(char *); 00042 integer j; 00043 real rcond_tmp__; 00044 integer prec_type__, trans_type__; 00045 real cwise_wrong__; 00046 extern /* Subroutine */ int cla_gbrfsx_extended__(integer *, integer *, 00047 integer *, integer *, integer *, integer *, complex *, integer *, 00048 complex *, integer *, integer *, logical *, real *, complex *, 00049 integer *, complex *, integer *, real *, integer *, real *, real * 00050 , complex *, real *, complex *, complex *, real *, integer *, 00051 real *, real *, logical *, integer *); 00052 char norm[1]; 00053 logical ignore_cwise__; 00054 extern doublereal cla_gbrcond_c__(char *, integer *, integer *, integer *, 00055 complex *, integer *, complex *, integer *, integer *, real *, 00056 logical *, integer *, complex *, real *, ftnlen); 00057 extern logical lsame_(char *, char *); 00058 real anorm; 00059 extern doublereal cla_gbrcond_x__(char *, integer *, integer *, integer *, 00060 complex *, integer *, complex *, integer *, integer *, complex *, 00061 integer *, complex *, real *, ftnlen), clangb_(char *, integer *, 00062 integer *, integer *, complex *, integer *, real *); 00063 extern /* Subroutine */ int cgbcon_(char *, integer *, integer *, integer 00064 *, complex *, integer *, integer *, real *, real *, complex *, 00065 real *, integer *); 00066 extern doublereal slamch_(char *); 00067 extern /* Subroutine */ int xerbla_(char *, integer *); 00068 logical colequ, notran, rowequ; 00069 extern integer ilaprec_(char *); 00070 integer ithresh, n_norms__; 00071 real rthresh; 00072 00073 00074 /* -- LAPACK routine (version 3.2.1) -- */ 00075 /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ 00076 /* -- Jason Riedy of Univ. of California Berkeley. -- */ 00077 /* -- April 2009 -- */ 00078 00079 /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ 00080 /* -- Univ. of California Berkeley and NAG Ltd. -- */ 00081 00082 /* .. */ 00083 /* .. Scalar Arguments .. */ 00084 /* .. */ 00085 /* .. Array Arguments .. */ 00086 /* .. */ 00087 00088 /* Purpose */ 00089 /* ======= */ 00090 00091 /* CGBRFSX improves the computed solution to a system of linear */ 00092 /* equations and provides error bounds and backward error estimates */ 00093 /* for the solution. In addition to normwise error bound, the code */ 00094 /* provides maximum componentwise error bound if possible. See */ 00095 /* comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the */ 00096 /* error bounds. */ 00097 00098 /* The original system of linear equations may have been equilibrated */ 00099 /* before calling this routine, as described by arguments EQUED, R */ 00100 /* and C below. In this case, the solution and error bounds returned */ 00101 /* are for the original unequilibrated system. */ 00102 00103 /* Arguments */ 00104 /* ========= */ 00105 00106 /* Some optional parameters are bundled in the PARAMS array. These */ 00107 /* settings determine how refinement is performed, but often the */ 00108 /* defaults are acceptable. If the defaults are acceptable, users */ 00109 /* can pass NPARAMS = 0 which prevents the source code from accessing */ 00110 /* the PARAMS argument. */ 00111 00112 /* TRANS (input) CHARACTER*1 */ 00113 /* Specifies the form of the system of equations: */ 00114 /* = 'N': A * X = B (No transpose) */ 00115 /* = 'T': A**T * X = B (Transpose) */ 00116 /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ 00117 00118 /* EQUED (input) CHARACTER*1 */ 00119 /* Specifies the form of equilibration that was done to A */ 00120 /* before calling this routine. This is needed to compute */ 00121 /* the solution and error bounds correctly. */ 00122 /* = 'N': No equilibration */ 00123 /* = 'R': Row equilibration, i.e., A has been premultiplied by */ 00124 /* diag(R). */ 00125 /* = 'C': Column equilibration, i.e., A has been postmultiplied */ 00126 /* by diag(C). */ 00127 /* = 'B': Both row and column equilibration, i.e., A has been */ 00128 /* replaced by diag(R) * A * diag(C). */ 00129 /* The right hand side B has been changed accordingly. */ 00130 00131 /* N (input) INTEGER */ 00132 /* The order of the matrix A. N >= 0. */ 00133 00134 /* KL (input) INTEGER */ 00135 /* The number of subdiagonals within the band of A. KL >= 0. */ 00136 00137 /* KU (input) INTEGER */ 00138 /* The number of superdiagonals within the band of A. KU >= 0. */ 00139 00140 /* NRHS (input) INTEGER */ 00141 /* The number of right hand sides, i.e., the number of columns */ 00142 /* of the matrices B and X. NRHS >= 0. */ 00143 00144 /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */ 00145 /* The original band matrix A, stored in rows 1 to KL+KU+1. */ 00146 /* The j-th column of A is stored in the j-th column of the */ 00147 /* array AB as follows: */ 00148 /* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). */ 00149 00150 /* LDAB (input) INTEGER */ 00151 /* The leading dimension of the array AB. LDAB >= KL+KU+1. */ 00152 00153 /* AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N) */ 00154 /* Details of the LU factorization of the band matrix A, as */ 00155 /* computed by DGBTRF. U is stored as an upper triangular band */ 00156 /* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */ 00157 /* the multipliers used during the factorization are stored in */ 00158 /* rows KL+KU+2 to 2*KL+KU+1. */ 00159 00160 /* LDAFB (input) INTEGER */ 00161 /* The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1. */ 00162 00163 /* IPIV (input) INTEGER array, dimension (N) */ 00164 /* The pivot indices from SGETRF; for 1<=i<=N, row i of the */ 00165 /* matrix was interchanged with row IPIV(i). */ 00166 00167 /* R (input or output) REAL array, dimension (N) */ 00168 /* The row scale factors for A. If EQUED = 'R' or 'B', A is */ 00169 /* multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */ 00170 /* is not accessed. R is an input argument if FACT = 'F'; */ 00171 /* otherwise, R is an output argument. If FACT = 'F' and */ 00172 /* EQUED = 'R' or 'B', each element of R must be positive. */ 00173 /* If R is output, each element of R is a power of the radix. */ 00174 /* If R is input, each element of R should be a power of the radix */ 00175 /* to ensure a reliable solution and error estimates. Scaling by */ 00176 /* powers of the radix does not cause rounding errors unless the */ 00177 /* result underflows or overflows. Rounding errors during scaling */ 00178 /* lead to refining with a matrix that is not equivalent to the */ 00179 /* input matrix, producing error estimates that may not be */ 00180 /* reliable. */ 00181 00182 /* C (input or output) REAL array, dimension (N) */ 00183 /* The column scale factors for A. If EQUED = 'C' or 'B', A is */ 00184 /* multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */ 00185 /* is not accessed. C is an input argument if FACT = 'F'; */ 00186 /* otherwise, C is an output argument. If FACT = 'F' and */ 00187 /* EQUED = 'C' or 'B', each element of C must be positive. */ 00188 /* If C is output, each element of C is a power of the radix. */ 00189 /* If C is input, each element of C should be a power of the radix */ 00190 /* to ensure a reliable solution and error estimates. Scaling by */ 00191 /* powers of the radix does not cause rounding errors unless the */ 00192 /* result underflows or overflows. Rounding errors during scaling */ 00193 /* lead to refining with a matrix that is not equivalent to the */ 00194 /* input matrix, producing error estimates that may not be */ 00195 /* reliable. */ 00196 00197 /* B (input) REAL array, dimension (LDB,NRHS) */ 00198 /* The right hand side matrix B. */ 00199 00200 /* LDB (input) INTEGER */ 00201 /* The leading dimension of the array B. LDB >= max(1,N). */ 00202 00203 /* X (input/output) REAL array, dimension (LDX,NRHS) */ 00204 /* On entry, the solution matrix X, as computed by SGETRS. */ 00205 /* On exit, the improved solution matrix X. */ 00206 00207 /* LDX (input) INTEGER */ 00208 /* The leading dimension of the array X. LDX >= max(1,N). */ 00209 00210 /* RCOND (output) REAL */ 00211 /* Reciprocal scaled condition number. This is an estimate of the */ 00212 /* reciprocal Skeel condition number of the matrix A after */ 00213 /* equilibration (if done). If this is less than the machine */ 00214 /* precision (in particular, if it is zero), the matrix is singular */ 00215 /* to working precision. Note that the error may still be small even */ 00216 /* if this number is very small and the matrix appears ill- */ 00217 /* conditioned. */ 00218 00219 /* BERR (output) REAL array, dimension (NRHS) */ 00220 /* Componentwise relative backward error. This is the */ 00221 /* componentwise relative backward error of each solution vector X(j) */ 00222 /* (i.e., the smallest relative change in any element of A or B that */ 00223 /* makes X(j) an exact solution). */ 00224 00225 /* N_ERR_BNDS (input) INTEGER */ 00226 /* Number of error bounds to return for each right hand side */ 00227 /* and each type (normwise or componentwise). See ERR_BNDS_NORM and */ 00228 /* ERR_BNDS_COMP below. */ 00229 00230 /* ERR_BNDS_NORM (output) REAL array, dimension (NRHS, N_ERR_BNDS) */ 00231 /* For each right-hand side, this array contains information about */ 00232 /* various error bounds and condition numbers corresponding to the */ 00233 /* normwise relative error, which is defined as follows: */ 00234 00235 /* Normwise relative error in the ith solution vector: */ 00236 /* max_j (abs(XTRUE(j,i) - X(j,i))) */ 00237 /* ------------------------------ */ 00238 /* max_j abs(X(j,i)) */ 00239 00240 /* The array is indexed by the type of error information as described */ 00241 /* below. There currently are up to three pieces of information */ 00242 /* returned. */ 00243 00244 /* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */ 00245 /* right-hand side. */ 00246 00247 /* The second index in ERR_BNDS_NORM(:,err) contains the following */ 00248 /* three fields: */ 00249 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00250 /* reciprocal condition number is less than the threshold */ 00251 /* sqrt(n) * slamch('Epsilon'). */ 00252 00253 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00254 /* almost certainly within a factor of 10 of the true error */ 00255 /* so long as the next entry is greater than the threshold */ 00256 /* sqrt(n) * slamch('Epsilon'). This error bound should only */ 00257 /* be trusted if the previous boolean is true. */ 00258 00259 /* err = 3 Reciprocal condition number: Estimated normwise */ 00260 /* reciprocal condition number. Compared with the threshold */ 00261 /* sqrt(n) * slamch('Epsilon') to determine if the error */ 00262 /* estimate is "guaranteed". These reciprocal condition */ 00263 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00264 /* appropriately scaled matrix Z. */ 00265 /* Let Z = S*A, where S scales each row by a power of the */ 00266 /* radix so all absolute row sums of Z are approximately 1. */ 00267 00268 /* See Lapack Working Note 165 for further details and extra */ 00269 /* cautions. */ 00270 00271 /* ERR_BNDS_COMP (output) REAL array, dimension (NRHS, N_ERR_BNDS) */ 00272 /* For each right-hand side, this array contains information about */ 00273 /* various error bounds and condition numbers corresponding to the */ 00274 /* componentwise relative error, which is defined as follows: */ 00275 00276 /* Componentwise relative error in the ith solution vector: */ 00277 /* abs(XTRUE(j,i) - X(j,i)) */ 00278 /* max_j ---------------------- */ 00279 /* abs(X(j,i)) */ 00280 00281 /* The array is indexed by the right-hand side i (on which the */ 00282 /* componentwise relative error depends), and the type of error */ 00283 /* information as described below. There currently are up to three */ 00284 /* pieces of information returned for each right-hand side. If */ 00285 /* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */ 00286 /* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */ 00287 /* the first (:,N_ERR_BNDS) entries are returned. */ 00288 00289 /* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */ 00290 /* right-hand side. */ 00291 00292 /* The second index in ERR_BNDS_COMP(:,err) contains the following */ 00293 /* three fields: */ 00294 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00295 /* reciprocal condition number is less than the threshold */ 00296 /* sqrt(n) * slamch('Epsilon'). */ 00297 00298 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00299 /* almost certainly within a factor of 10 of the true error */ 00300 /* so long as the next entry is greater than the threshold */ 00301 /* sqrt(n) * slamch('Epsilon'). This error bound should only */ 00302 /* be trusted if the previous boolean is true. */ 00303 00304 /* err = 3 Reciprocal condition number: Estimated componentwise */ 00305 /* reciprocal condition number. Compared with the threshold */ 00306 /* sqrt(n) * slamch('Epsilon') to determine if the error */ 00307 /* estimate is "guaranteed". These reciprocal condition */ 00308 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00309 /* appropriately scaled matrix Z. */ 00310 /* Let Z = S*(A*diag(x)), where x is the solution for the */ 00311 /* current right-hand side and S scales each row of */ 00312 /* A*diag(x) by a power of the radix so all absolute row */ 00313 /* sums of Z are approximately 1. */ 00314 00315 /* See Lapack Working Note 165 for further details and extra */ 00316 /* cautions. */ 00317 00318 /* NPARAMS (input) INTEGER */ 00319 /* Specifies the number of parameters set in PARAMS. If .LE. 0, the */ 00320 /* PARAMS array is never referenced and default values are used. */ 00321 00322 /* PARAMS (input / output) REAL array, dimension NPARAMS */ 00323 /* Specifies algorithm parameters. If an entry is .LT. 0.0, then */ 00324 /* that entry will be filled with default value used for that */ 00325 /* parameter. Only positions up to NPARAMS are accessed; defaults */ 00326 /* are used for higher-numbered parameters. */ 00327 00328 /* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */ 00329 /* refinement or not. */ 00330 /* Default: 1.0 */ 00331 /* = 0.0 : No refinement is performed, and no error bounds are */ 00332 /* computed. */ 00333 /* = 1.0 : Use the double-precision refinement algorithm, */ 00334 /* possibly with doubled-single computations if the */ 00335 /* compilation environment does not support DOUBLE */ 00336 /* PRECISION. */ 00337 /* (other values are reserved for future use) */ 00338 00339 /* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */ 00340 /* computations allowed for refinement. */ 00341 /* Default: 10 */ 00342 /* Aggressive: Set to 100 to permit convergence using approximate */ 00343 /* factorizations or factorizations other than LU. If */ 00344 /* the factorization uses a technique other than */ 00345 /* Gaussian elimination, the guarantees in */ 00346 /* err_bnds_norm and err_bnds_comp may no longer be */ 00347 /* trustworthy. */ 00348 00349 /* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */ 00350 /* will attempt to find a solution with small componentwise */ 00351 /* relative error in the double-precision algorithm. Positive */ 00352 /* is true, 0.0 is false. */ 00353 /* Default: 1.0 (attempt componentwise convergence) */ 00354 00355 /* WORK (workspace) COMPLEX array, dimension (2*N) */ 00356 00357 /* RWORK (workspace) REAL array, dimension (2*N) */ 00358 00359 /* INFO (output) INTEGER */ 00360 /* = 0: Successful exit. The solution to every right-hand side is */ 00361 /* guaranteed. */ 00362 /* < 0: If INFO = -i, the i-th argument had an illegal value */ 00363 /* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */ 00364 /* has been completed, but the factor U is exactly singular, so */ 00365 /* the solution and error bounds could not be computed. RCOND = 0 */ 00366 /* is returned. */ 00367 /* = N+J: The solution corresponding to the Jth right-hand side is */ 00368 /* not guaranteed. The solutions corresponding to other right- */ 00369 /* hand sides K with K > J may not be guaranteed as well, but */ 00370 /* only the first such right-hand side is reported. If a small */ 00371 /* componentwise error is not requested (PARAMS(3) = 0.0) then */ 00372 /* the Jth right-hand side is the first with a normwise error */ 00373 /* bound that is not guaranteed (the smallest J such */ 00374 /* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */ 00375 /* the Jth right-hand side is the first with either a normwise or */ 00376 /* componentwise error bound that is not guaranteed (the smallest */ 00377 /* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */ 00378 /* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */ 00379 /* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */ 00380 /* about all of the right-hand sides check ERR_BNDS_NORM or */ 00381 /* ERR_BNDS_COMP. */ 00382 00383 /* ================================================================== */ 00384 00385 /* .. Parameters .. */ 00386 /* .. */ 00387 /* .. Local Scalars .. */ 00388 /* .. */ 00389 /* .. External Subroutines .. */ 00390 /* .. */ 00391 /* .. Intrinsic Functions .. */ 00392 /* .. */ 00393 /* .. External Functions .. */ 00394 /* .. */ 00395 /* .. Executable Statements .. */ 00396 00397 /* Check the input parameters. */ 00398 00399 /* Parameter adjustments */ 00400 err_bnds_comp_dim1 = *nrhs; 00401 err_bnds_comp_offset = 1 + err_bnds_comp_dim1; 00402 err_bnds_comp__ -= err_bnds_comp_offset; 00403 err_bnds_norm_dim1 = *nrhs; 00404 err_bnds_norm_offset = 1 + err_bnds_norm_dim1; 00405 err_bnds_norm__ -= err_bnds_norm_offset; 00406 ab_dim1 = *ldab; 00407 ab_offset = 1 + ab_dim1; 00408 ab -= ab_offset; 00409 afb_dim1 = *ldafb; 00410 afb_offset = 1 + afb_dim1; 00411 afb -= afb_offset; 00412 --ipiv; 00413 --r__; 00414 --c__; 00415 b_dim1 = *ldb; 00416 b_offset = 1 + b_dim1; 00417 b -= b_offset; 00418 x_dim1 = *ldx; 00419 x_offset = 1 + x_dim1; 00420 x -= x_offset; 00421 --berr; 00422 --params; 00423 --work; 00424 --rwork; 00425 00426 /* Function Body */ 00427 *info = 0; 00428 trans_type__ = ilatrans_(trans); 00429 ref_type__ = 1; 00430 if (*nparams >= 1) { 00431 if (params[1] < 0.f) { 00432 params[1] = 1.f; 00433 } else { 00434 ref_type__ = params[1]; 00435 } 00436 } 00437 00438 /* Set default parameters. */ 00439 00440 illrcond_thresh__ = (real) (*n) * slamch_("Epsilon"); 00441 ithresh = 10; 00442 rthresh = .5f; 00443 unstable_thresh__ = .25f; 00444 ignore_cwise__ = FALSE_; 00445 00446 if (*nparams >= 2) { 00447 if (params[2] < 0.f) { 00448 params[2] = (real) ithresh; 00449 } else { 00450 ithresh = (integer) params[2]; 00451 } 00452 } 00453 if (*nparams >= 3) { 00454 if (params[3] < 0.f) { 00455 if (ignore_cwise__) { 00456 params[3] = 0.f; 00457 } else { 00458 params[3] = 1.f; 00459 } 00460 } else { 00461 ignore_cwise__ = params[3] == 0.f; 00462 } 00463 } 00464 if (ref_type__ == 0 || *n_err_bnds__ == 0) { 00465 n_norms__ = 0; 00466 } else if (ignore_cwise__) { 00467 n_norms__ = 1; 00468 } else { 00469 n_norms__ = 2; 00470 } 00471 00472 notran = lsame_(trans, "N"); 00473 rowequ = lsame_(equed, "R") || lsame_(equed, "B"); 00474 colequ = lsame_(equed, "C") || lsame_(equed, "B"); 00475 00476 /* Test input parameters. */ 00477 00478 if (trans_type__ == -1) { 00479 *info = -1; 00480 } else if (! rowequ && ! colequ && ! lsame_(equed, "N")) { 00481 *info = -2; 00482 } else if (*n < 0) { 00483 *info = -3; 00484 } else if (*kl < 0) { 00485 *info = -4; 00486 } else if (*ku < 0) { 00487 *info = -5; 00488 } else if (*nrhs < 0) { 00489 *info = -6; 00490 } else if (*ldab < *kl + *ku + 1) { 00491 *info = -8; 00492 } else if (*ldafb < (*kl << 1) + *ku + 1) { 00493 *info = -10; 00494 } else if (*ldb < max(1,*n)) { 00495 *info = -13; 00496 } else if (*ldx < max(1,*n)) { 00497 *info = -15; 00498 } 00499 if (*info != 0) { 00500 i__1 = -(*info); 00501 xerbla_("CGBRFSX", &i__1); 00502 return 0; 00503 } 00504 00505 /* Quick return if possible. */ 00506 00507 if (*n == 0 || *nrhs == 0) { 00508 *rcond = 1.f; 00509 i__1 = *nrhs; 00510 for (j = 1; j <= i__1; ++j) { 00511 berr[j] = 0.f; 00512 if (*n_err_bnds__ >= 1) { 00513 err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f; 00514 err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f; 00515 } else if (*n_err_bnds__ >= 2) { 00516 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.f; 00517 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.f; 00518 } else if (*n_err_bnds__ >= 3) { 00519 err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.f; 00520 err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.f; 00521 } 00522 } 00523 return 0; 00524 } 00525 00526 /* Default to failure. */ 00527 00528 *rcond = 0.f; 00529 i__1 = *nrhs; 00530 for (j = 1; j <= i__1; ++j) { 00531 berr[j] = 1.f; 00532 if (*n_err_bnds__ >= 1) { 00533 err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f; 00534 err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f; 00535 } else if (*n_err_bnds__ >= 2) { 00536 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f; 00537 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f; 00538 } else if (*n_err_bnds__ >= 3) { 00539 err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.f; 00540 err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.f; 00541 } 00542 } 00543 00544 /* Compute the norm of A and the reciprocal of the condition */ 00545 /* number of A. */ 00546 00547 if (notran) { 00548 *(unsigned char *)norm = 'I'; 00549 } else { 00550 *(unsigned char *)norm = '1'; 00551 } 00552 anorm = clangb_(norm, n, kl, ku, &ab[ab_offset], ldab, &rwork[1]); 00553 cgbcon_(norm, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], &anorm, rcond, 00554 &work[1], &rwork[1], info); 00555 00556 /* Perform refinement on each right-hand side */ 00557 00558 if (ref_type__ != 0) { 00559 prec_type__ = ilaprec_("D"); 00560 if (notran) { 00561 cla_gbrfsx_extended__(&prec_type__, &trans_type__, n, kl, ku, 00562 nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, & 00563 ipiv[1], &colequ, &c__[1], &b[b_offset], ldb, &x[x_offset] 00564 , ldx, &berr[1], &n_norms__, &err_bnds_norm__[ 00565 err_bnds_norm_offset], &err_bnds_comp__[ 00566 err_bnds_comp_offset], &work[1], &rwork[1], &work[*n + 1], 00567 (complex *)(&rwork[1]), rcond, &ithresh, &rthresh, &unstable_thresh__, & 00568 ignore_cwise__, info); 00569 } else { 00570 cla_gbrfsx_extended__(&prec_type__, &trans_type__, n, kl, ku, 00571 nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, & 00572 ipiv[1], &rowequ, &r__[1], &b[b_offset], ldb, &x[x_offset] 00573 , ldx, &berr[1], &n_norms__, &err_bnds_norm__[ 00574 err_bnds_norm_offset], &err_bnds_comp__[ 00575 err_bnds_comp_offset], &work[1], &rwork[1], &work[*n + 1], 00576 (complex *)(&rwork[1]), rcond, &ithresh, &rthresh, &unstable_thresh__, & 00577 ignore_cwise__, info); 00578 } 00579 } 00580 /* Computing MAX */ 00581 r__1 = 10.f, r__2 = sqrt((real) (*n)); 00582 err_lbnd__ = dmax(r__1,r__2) * slamch_("Epsilon"); 00583 if (*n_err_bnds__ >= 1 && n_norms__ >= 1) { 00584 00585 /* Compute scaled normwise condition number cond(A*C). */ 00586 00587 if (colequ && notran) { 00588 rcond_tmp__ = cla_gbrcond_c__(trans, n, kl, ku, &ab[ab_offset], 00589 ldab, &afb[afb_offset], ldafb, &ipiv[1], &c__[1], &c_true, 00590 info, &work[1], &rwork[1], (ftnlen)1); 00591 } else if (rowequ && ! notran) { 00592 rcond_tmp__ = cla_gbrcond_c__(trans, n, kl, ku, &ab[ab_offset], 00593 ldab, &afb[afb_offset], ldafb, &ipiv[1], &r__[1], &c_true, 00594 info, &work[1], &rwork[1], (ftnlen)1); 00595 } else { 00596 rcond_tmp__ = cla_gbrcond_c__(trans, n, kl, ku, &ab[ab_offset], 00597 ldab, &afb[afb_offset], ldafb, &ipiv[1], &c__[1], & 00598 c_false, info, &work[1], &rwork[1], (ftnlen)1); 00599 } 00600 i__1 = *nrhs; 00601 for (j = 1; j <= i__1; ++j) { 00602 00603 /* Cap the error at 1.0. */ 00604 00605 if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1 00606 << 1)] > 1.f) { 00607 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f; 00608 } 00609 00610 /* Threshold the error (see LAWN). */ 00611 00612 if (rcond_tmp__ < illrcond_thresh__) { 00613 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f; 00614 err_bnds_norm__[j + err_bnds_norm_dim1] = 0.f; 00615 if (*info <= *n) { 00616 *info = *n + j; 00617 } 00618 } else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] < 00619 err_lbnd__) { 00620 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__; 00621 err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f; 00622 } 00623 00624 /* Save the condition number. */ 00625 00626 if (*n_err_bnds__ >= 3) { 00627 err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__; 00628 } 00629 } 00630 } 00631 if (*n_err_bnds__ >= 1 && n_norms__ >= 2) { 00632 00633 /* Compute componentwise condition number cond(A*diag(Y(:,J))) for */ 00634 /* each right-hand side using the current solution as an estimate of */ 00635 /* the true solution. If the componentwise error estimate is too */ 00636 /* large, then the solution is a lousy estimate of truth and the */ 00637 /* estimated RCOND may be too optimistic. To avoid misleading users, */ 00638 /* the inverse condition number is set to 0.0 when the estimated */ 00639 /* cwise error is at least CWISE_WRONG. */ 00640 00641 cwise_wrong__ = sqrt(slamch_("Epsilon")); 00642 i__1 = *nrhs; 00643 for (j = 1; j <= i__1; ++j) { 00644 if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 00645 cwise_wrong__) { 00646 rcond_tmp__ = cla_gbrcond_x__(trans, n, kl, ku, &ab[ab_offset] 00647 , ldab, &afb[afb_offset], ldafb, &ipiv[1], &x[j * 00648 x_dim1 + 1], info, &work[1], &rwork[1], (ftnlen)1); 00649 } else { 00650 rcond_tmp__ = 0.f; 00651 } 00652 00653 /* Cap the error at 1.0. */ 00654 00655 if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1 00656 << 1)] > 1.f) { 00657 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f; 00658 } 00659 00660 /* Threshold the error (see LAWN). */ 00661 00662 if (rcond_tmp__ < illrcond_thresh__) { 00663 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f; 00664 err_bnds_comp__[j + err_bnds_comp_dim1] = 0.f; 00665 if (params[3] == 1.f && *info < *n + j) { 00666 *info = *n + j; 00667 } 00668 } else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 00669 err_lbnd__) { 00670 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__; 00671 err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f; 00672 } 00673 00674 /* Save the condition number. */ 00675 00676 if (*n_err_bnds__ >= 3) { 00677 err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__; 00678 } 00679 } 00680 } 00681 00682 return 0; 00683 00684 /* End of CGBRFSX */ 00685 00686 } /* cgbrfsx_ */