cgbequ.c
Go to the documentation of this file.
00001 /* cgbequ.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int cgbequ_(integer *m, integer *n, integer *kl, integer *ku, 
00017          complex *ab, integer *ldab, real *r__, real *c__, real *rowcnd, real 
00018         *colcnd, real *amax, integer *info)
00019 {
00020     /* System generated locals */
00021     integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
00022     real r__1, r__2, r__3, r__4;
00023 
00024     /* Builtin functions */
00025     double r_imag(complex *);
00026 
00027     /* Local variables */
00028     integer i__, j, kd;
00029     real rcmin, rcmax;
00030     extern doublereal slamch_(char *);
00031     extern /* Subroutine */ int xerbla_(char *, integer *);
00032     real bignum, smlnum;
00033 
00034 
00035 /*  -- LAPACK routine (version 3.2) -- */
00036 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00037 /*     November 2006 */
00038 
00039 /*     .. Scalar Arguments .. */
00040 /*     .. */
00041 /*     .. Array Arguments .. */
00042 /*     .. */
00043 
00044 /*  Purpose */
00045 /*  ======= */
00046 
00047 /*  CGBEQU computes row and column scalings intended to equilibrate an */
00048 /*  M-by-N band matrix A and reduce its condition number.  R returns the */
00049 /*  row scale factors and C the column scale factors, chosen to try to */
00050 /*  make the largest element in each row and column of the matrix B with */
00051 /*  elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. */
00052 
00053 /*  R(i) and C(j) are restricted to be between SMLNUM = smallest safe */
00054 /*  number and BIGNUM = largest safe number.  Use of these scaling */
00055 /*  factors is not guaranteed to reduce the condition number of A but */
00056 /*  works well in practice. */
00057 
00058 /*  Arguments */
00059 /*  ========= */
00060 
00061 /*  M       (input) INTEGER */
00062 /*          The number of rows of the matrix A.  M >= 0. */
00063 
00064 /*  N       (input) INTEGER */
00065 /*          The number of columns of the matrix A.  N >= 0. */
00066 
00067 /*  KL      (input) INTEGER */
00068 /*          The number of subdiagonals within the band of A.  KL >= 0. */
00069 
00070 /*  KU      (input) INTEGER */
00071 /*          The number of superdiagonals within the band of A.  KU >= 0. */
00072 
00073 /*  AB      (input) COMPLEX array, dimension (LDAB,N) */
00074 /*          The band matrix A, stored in rows 1 to KL+KU+1.  The j-th */
00075 /*          column of A is stored in the j-th column of the array AB as */
00076 /*          follows: */
00077 /*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). */
00078 
00079 /*  LDAB    (input) INTEGER */
00080 /*          The leading dimension of the array AB.  LDAB >= KL+KU+1. */
00081 
00082 /*  R       (output) REAL array, dimension (M) */
00083 /*          If INFO = 0, or INFO > M, R contains the row scale factors */
00084 /*          for A. */
00085 
00086 /*  C       (output) REAL array, dimension (N) */
00087 /*          If INFO = 0, C contains the column scale factors for A. */
00088 
00089 /*  ROWCND  (output) REAL */
00090 /*          If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
00091 /*          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and */
00092 /*          AMAX is neither too large nor too small, it is not worth */
00093 /*          scaling by R. */
00094 
00095 /*  COLCND  (output) REAL */
00096 /*          If INFO = 0, COLCND contains the ratio of the smallest */
00097 /*          C(i) to the largest C(i).  If COLCND >= 0.1, it is not */
00098 /*          worth scaling by C. */
00099 
00100 /*  AMAX    (output) REAL */
00101 /*          Absolute value of largest matrix element.  If AMAX is very */
00102 /*          close to overflow or very close to underflow, the matrix */
00103 /*          should be scaled. */
00104 
00105 /*  INFO    (output) INTEGER */
00106 /*          = 0:  successful exit */
00107 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00108 /*          > 0:  if INFO = i, and i is */
00109 /*                <= M:  the i-th row of A is exactly zero */
00110 /*                >  M:  the (i-M)-th column of A is exactly zero */
00111 
00112 /*  ===================================================================== */
00113 
00114 /*     .. Parameters .. */
00115 /*     .. */
00116 /*     .. Local Scalars .. */
00117 /*     .. */
00118 /*     .. External Functions .. */
00119 /*     .. */
00120 /*     .. External Subroutines .. */
00121 /*     .. */
00122 /*     .. Intrinsic Functions .. */
00123 /*     .. */
00124 /*     .. Statement Functions .. */
00125 /*     .. */
00126 /*     .. Statement Function definitions .. */
00127 /*     .. */
00128 /*     .. Executable Statements .. */
00129 
00130 /*     Test the input parameters */
00131 
00132     /* Parameter adjustments */
00133     ab_dim1 = *ldab;
00134     ab_offset = 1 + ab_dim1;
00135     ab -= ab_offset;
00136     --r__;
00137     --c__;
00138 
00139     /* Function Body */
00140     *info = 0;
00141     if (*m < 0) {
00142         *info = -1;
00143     } else if (*n < 0) {
00144         *info = -2;
00145     } else if (*kl < 0) {
00146         *info = -3;
00147     } else if (*ku < 0) {
00148         *info = -4;
00149     } else if (*ldab < *kl + *ku + 1) {
00150         *info = -6;
00151     }
00152     if (*info != 0) {
00153         i__1 = -(*info);
00154         xerbla_("CGBEQU", &i__1);
00155         return 0;
00156     }
00157 
00158 /*     Quick return if possible */
00159 
00160     if (*m == 0 || *n == 0) {
00161         *rowcnd = 1.f;
00162         *colcnd = 1.f;
00163         *amax = 0.f;
00164         return 0;
00165     }
00166 
00167 /*     Get machine constants. */
00168 
00169     smlnum = slamch_("S");
00170     bignum = 1.f / smlnum;
00171 
00172 /*     Compute row scale factors. */
00173 
00174     i__1 = *m;
00175     for (i__ = 1; i__ <= i__1; ++i__) {
00176         r__[i__] = 0.f;
00177 /* L10: */
00178     }
00179 
00180 /*     Find the maximum element in each row. */
00181 
00182     kd = *ku + 1;
00183     i__1 = *n;
00184     for (j = 1; j <= i__1; ++j) {
00185 /* Computing MAX */
00186         i__2 = j - *ku;
00187 /* Computing MIN */
00188         i__4 = j + *kl;
00189         i__3 = min(i__4,*m);
00190         for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
00191 /* Computing MAX */
00192             i__2 = kd + i__ - j + j * ab_dim1;
00193             r__3 = r__[i__], r__4 = (r__1 = ab[i__2].r, dabs(r__1)) + (r__2 = 
00194                     r_imag(&ab[kd + i__ - j + j * ab_dim1]), dabs(r__2));
00195             r__[i__] = dmax(r__3,r__4);
00196 /* L20: */
00197         }
00198 /* L30: */
00199     }
00200 
00201 /*     Find the maximum and minimum scale factors. */
00202 
00203     rcmin = bignum;
00204     rcmax = 0.f;
00205     i__1 = *m;
00206     for (i__ = 1; i__ <= i__1; ++i__) {
00207 /* Computing MAX */
00208         r__1 = rcmax, r__2 = r__[i__];
00209         rcmax = dmax(r__1,r__2);
00210 /* Computing MIN */
00211         r__1 = rcmin, r__2 = r__[i__];
00212         rcmin = dmin(r__1,r__2);
00213 /* L40: */
00214     }
00215     *amax = rcmax;
00216 
00217     if (rcmin == 0.f) {
00218 
00219 /*        Find the first zero scale factor and return an error code. */
00220 
00221         i__1 = *m;
00222         for (i__ = 1; i__ <= i__1; ++i__) {
00223             if (r__[i__] == 0.f) {
00224                 *info = i__;
00225                 return 0;
00226             }
00227 /* L50: */
00228         }
00229     } else {
00230 
00231 /*        Invert the scale factors. */
00232 
00233         i__1 = *m;
00234         for (i__ = 1; i__ <= i__1; ++i__) {
00235 /* Computing MIN */
00236 /* Computing MAX */
00237             r__2 = r__[i__];
00238             r__1 = dmax(r__2,smlnum);
00239             r__[i__] = 1.f / dmin(r__1,bignum);
00240 /* L60: */
00241         }
00242 
00243 /*        Compute ROWCND = min(R(I)) / max(R(I)) */
00244 
00245         *rowcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum);
00246     }
00247 
00248 /*     Compute column scale factors */
00249 
00250     i__1 = *n;
00251     for (j = 1; j <= i__1; ++j) {
00252         c__[j] = 0.f;
00253 /* L70: */
00254     }
00255 
00256 /*     Find the maximum element in each column, */
00257 /*     assuming the row scaling computed above. */
00258 
00259     kd = *ku + 1;
00260     i__1 = *n;
00261     for (j = 1; j <= i__1; ++j) {
00262 /* Computing MAX */
00263         i__3 = j - *ku;
00264 /* Computing MIN */
00265         i__4 = j + *kl;
00266         i__2 = min(i__4,*m);
00267         for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
00268 /* Computing MAX */
00269             i__3 = kd + i__ - j + j * ab_dim1;
00270             r__3 = c__[j], r__4 = ((r__1 = ab[i__3].r, dabs(r__1)) + (r__2 = 
00271                     r_imag(&ab[kd + i__ - j + j * ab_dim1]), dabs(r__2))) * 
00272                     r__[i__];
00273             c__[j] = dmax(r__3,r__4);
00274 /* L80: */
00275         }
00276 /* L90: */
00277     }
00278 
00279 /*     Find the maximum and minimum scale factors. */
00280 
00281     rcmin = bignum;
00282     rcmax = 0.f;
00283     i__1 = *n;
00284     for (j = 1; j <= i__1; ++j) {
00285 /* Computing MIN */
00286         r__1 = rcmin, r__2 = c__[j];
00287         rcmin = dmin(r__1,r__2);
00288 /* Computing MAX */
00289         r__1 = rcmax, r__2 = c__[j];
00290         rcmax = dmax(r__1,r__2);
00291 /* L100: */
00292     }
00293 
00294     if (rcmin == 0.f) {
00295 
00296 /*        Find the first zero scale factor and return an error code. */
00297 
00298         i__1 = *n;
00299         for (j = 1; j <= i__1; ++j) {
00300             if (c__[j] == 0.f) {
00301                 *info = *m + j;
00302                 return 0;
00303             }
00304 /* L110: */
00305         }
00306     } else {
00307 
00308 /*        Invert the scale factors. */
00309 
00310         i__1 = *n;
00311         for (j = 1; j <= i__1; ++j) {
00312 /* Computing MIN */
00313 /* Computing MAX */
00314             r__2 = c__[j];
00315             r__1 = dmax(r__2,smlnum);
00316             c__[j] = 1.f / dmin(r__1,bignum);
00317 /* L120: */
00318         }
00319 
00320 /*        Compute COLCND = min(C(J)) / max(C(J)) */
00321 
00322         *colcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum);
00323     }
00324 
00325     return 0;
00326 
00327 /*     End of CGBEQU */
00328 
00329 } /* cgbequ_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:25