00001 /* dlahilb.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static doublereal c_b4 = 0.; 00019 00020 /* Subroutine */ int dlahilb_(integer *n, integer *nrhs, doublereal *a, 00021 integer *lda, doublereal *x, integer *ldx, doublereal *b, integer * 00022 ldb, doublereal *work, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, x_dim1, x_offset, b_dim1, b_offset, i__1, i__2; 00026 doublereal d__1; 00027 00028 /* Local variables */ 00029 integer i__, j, m, r__, ti, tm; 00030 doublecomplex tmp; 00031 extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 00032 doublereal *, doublecomplex *, doublereal *, integer *), 00033 xerbla_(char *, integer *); 00034 00035 00036 /* -- LAPACK auxiliary test routine (version 3.0) -- */ 00037 /* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */ 00038 /* Courant Institute, Argonne National Lab, and Rice University */ 00039 /* 28 August, 2006 */ 00040 00041 /* David Vu <dtv@cs.berkeley.edu> */ 00042 /* Yozo Hida <yozo@cs.berkeley.edu> */ 00043 /* Jason Riedy <ejr@cs.berkeley.edu> */ 00044 /* D. Halligan <dhalligan@berkeley.edu> */ 00045 00046 /* .. Scalar Arguments .. */ 00047 /* .. Array Arguments .. */ 00048 /* .. */ 00049 00050 /* Purpose */ 00051 /* ======= */ 00052 00053 /* DLAHILB generates an N by N scaled Hilbert matrix in A along with */ 00054 /* NRHS right-hand sides in B and solutions in X such that A*X=B. */ 00055 00056 /* The Hilbert matrix is scaled by M = LCM(1, 2, ..., 2*N-1) so that all */ 00057 /* entries are integers. The right-hand sides are the first NRHS */ 00058 /* columns of M * the identity matrix, and the solutions are the */ 00059 /* first NRHS columns of the inverse Hilbert matrix. */ 00060 00061 /* The condition number of the Hilbert matrix grows exponentially with */ 00062 /* its size, roughly as O(e ** (3.5*N)). Additionally, the inverse */ 00063 /* Hilbert matrices beyond a relatively small dimension cannot be */ 00064 /* generated exactly without extra precision. Precision is exhausted */ 00065 /* when the largest entry in the inverse Hilbert matrix is greater than */ 00066 /* 2 to the power of the number of bits in the fraction of the data type */ 00067 /* used plus one, which is 24 for single precision. */ 00068 00069 /* In single, the generated solution is exact for N <= 6 and has */ 00070 /* small componentwise error for 7 <= N <= 11. */ 00071 00072 /* Arguments */ 00073 /* ========= */ 00074 00075 /* N (input) INTEGER */ 00076 /* The dimension of the matrix A. */ 00077 00078 /* NRHS (input) NRHS */ 00079 /* The requested number of right-hand sides. */ 00080 00081 /* A (output) DOUBLE PRECISION array, dimension (LDA, N) */ 00082 /* The generated scaled Hilbert matrix. */ 00083 00084 /* LDA (input) INTEGER */ 00085 /* The leading dimension of the array A. LDA >= N. */ 00086 00087 /* X (output) DOUBLE PRECISION array, dimension (LDX, NRHS) */ 00088 /* The generated exact solutions. Currently, the first NRHS */ 00089 /* columns of the inverse Hilbert matrix. */ 00090 00091 /* LDX (input) INTEGER */ 00092 /* The leading dimension of the array X. LDX >= N. */ 00093 00094 /* B (output) DOUBLE PRECISION array, dimension (LDB, NRHS) */ 00095 /* The generated right-hand sides. Currently, the first NRHS */ 00096 /* columns of LCM(1, 2, ..., 2*N-1) * the identity matrix. */ 00097 00098 /* LDB (input) INTEGER */ 00099 /* The leading dimension of the array B. LDB >= N. */ 00100 00101 /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00102 00103 00104 /* INFO (output) INTEGER */ 00105 /* = 0: successful exit */ 00106 /* = 1: N is too large; the data is still generated but may not */ 00107 /* be not exact. */ 00108 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00109 00110 /* ===================================================================== */ 00111 /* .. Local Scalars .. */ 00112 /* .. Parameters .. */ 00113 /* NMAX_EXACT the largest dimension where the generated data is */ 00114 /* exact. */ 00115 /* NMAX_APPROX the largest dimension where the generated data has */ 00116 /* a small componentwise relative error. */ 00117 /* .. */ 00118 /* .. External Functions */ 00119 /* .. */ 00120 /* .. Executable Statements .. */ 00121 00122 /* Test the input arguments */ 00123 00124 /* Parameter adjustments */ 00125 --work; 00126 a_dim1 = *lda; 00127 a_offset = 1 + a_dim1; 00128 a -= a_offset; 00129 x_dim1 = *ldx; 00130 x_offset = 1 + x_dim1; 00131 x -= x_offset; 00132 b_dim1 = *ldb; 00133 b_offset = 1 + b_dim1; 00134 b -= b_offset; 00135 00136 /* Function Body */ 00137 *info = 0; 00138 if (*n < 0 || *n > 11) { 00139 *info = -1; 00140 } else if (*nrhs < 0) { 00141 *info = -2; 00142 } else if (*lda < *n) { 00143 *info = -4; 00144 } else if (*ldx < *n) { 00145 *info = -6; 00146 } else if (*ldb < *n) { 00147 *info = -8; 00148 } 00149 if (*info < 0) { 00150 i__1 = -(*info); 00151 xerbla_("DLAHILB", &i__1); 00152 return 0; 00153 } 00154 if (*n > 6) { 00155 *info = 1; 00156 } 00157 /* Compute M = the LCM of the integers [1, 2*N-1]. The largest */ 00158 /* reasonable N is small enough that integers suffice (up to N = 11). */ 00159 m = 1; 00160 i__1 = (*n << 1) - 1; 00161 for (i__ = 2; i__ <= i__1; ++i__) { 00162 tm = m; 00163 ti = i__; 00164 r__ = tm % ti; 00165 while(r__ != 0) { 00166 tm = ti; 00167 ti = r__; 00168 r__ = tm % ti; 00169 } 00170 m = m / ti * i__; 00171 } 00172 /* Generate the scaled Hilbert matrix in A */ 00173 i__1 = *n; 00174 for (j = 1; j <= i__1; ++j) { 00175 i__2 = *n; 00176 for (i__ = 1; i__ <= i__2; ++i__) { 00177 a[i__ + j * a_dim1] = (doublereal) m / (i__ + j - 1); 00178 } 00179 } 00180 /* Generate matrix B as simply the first NRHS columns of M * the */ 00181 /* identity. */ 00182 d__1 = (doublereal) m; 00183 tmp.r = d__1, tmp.i = 0.; 00184 dlaset_("Full", n, nrhs, &c_b4, &tmp, &b[b_offset], ldb); 00185 /* Generate the true solutions in X. Because B = the first NRHS */ 00186 /* columns of M*I, the true solutions are just the first NRHS columns */ 00187 /* of the inverse Hilbert matrix. */ 00188 work[1] = (doublereal) (*n); 00189 i__1 = *n; 00190 for (j = 2; j <= i__1; ++j) { 00191 work[j] = work[j - 1] / (j - 1) * (j - 1 - *n) / (j - 1) * (*n + j - 00192 1); 00193 } 00194 i__1 = *nrhs; 00195 for (j = 1; j <= i__1; ++j) { 00196 i__2 = *n; 00197 for (i__ = 1; i__ <= i__2; ++i__) { 00198 x[i__ + j * x_dim1] = work[i__] * work[j] / (i__ + j - 1); 00199 } 00200 } 00201 return 0; 00202 } /* dlahilb_ */