all_indices.h
Go to the documentation of this file.
00001 /***********************************************************************
00002  * Software License Agreement (BSD License)
00003  *
00004  * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
00005  * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
00006  *
00007  * Redistribution and use in source and binary forms, with or without
00008  * modification, are permitted provided that the following conditions
00009  * are met:
00010  *
00011  * 1. Redistributions of source code must retain the above copyright
00012  *    notice, this list of conditions and the following disclaimer.
00013  * 2. Redistributions in binary form must reproduce the above copyright
00014  *    notice, this list of conditions and the following disclaimer in the
00015  *    documentation and/or other materials provided with the distribution.
00016  *
00017  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
00018  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
00019  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
00020  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
00021  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
00022  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
00023  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
00024  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
00025  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
00026  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00027  *************************************************************************/
00028 
00029 
00030 #ifndef RTABMAP_FLANN_ALL_INDICES_H_
00031 #define RTABMAP_FLANN_ALL_INDICES_H_
00032 
00033 #include "rtflann/general.h"
00034 
00035 #include "rtflann/algorithms/nn_index.h"
00036 #include "rtflann/algorithms/kdtree_index.h"
00037 #include "rtflann/algorithms/kdtree_single_index.h"
00038 #include "rtflann/algorithms/kmeans_index.h"
00039 #include "rtflann/algorithms/composite_index.h"
00040 #include "rtflann/algorithms/linear_index.h"
00041 #include "rtflann/algorithms/hierarchical_clustering_index.h"
00042 #include "rtflann/algorithms/lsh_index.h"
00043 #include "rtflann/algorithms/autotuned_index.h"
00044 #ifdef FLANN_USE_CUDA
00045 #include "rtflann/algorithms/kdtree_cuda_3d_index.h"
00046 #endif
00047 
00048 
00049 namespace rtflann
00050 {
00051 
00055 template<bool, typename T = void> struct enable_if{};
00056 template<typename T> struct enable_if<true,T> { typedef T type; };
00057 
00061 template<bool, typename T> struct disable_if{ typedef T type; };
00062 template<typename T> struct disable_if<true,T> { };
00063 
00067 template <typename T, typename U>
00068 struct same_type
00069 {
00070     enum {value = false};
00071 };
00072 
00073 template<typename T>
00074 struct same_type<T,T>
00075 {
00076     enum {value = true};
00077 };
00078 
00079 #define HAS_MEMBER(member) \
00080     template<typename T> \
00081     struct member { \
00082         typedef char No; \
00083         typedef long Yes; \
00084         template<typename C> static Yes test( typename C::member* ); \
00085         template<typename C> static No test( ... ); \
00086         enum { value = sizeof (test<T>(0))==sizeof(Yes) }; \
00087     };
00088 
00089 HAS_MEMBER(needs_kdtree_distance)
00090 HAS_MEMBER(needs_vector_space_distance)
00091 HAS_MEMBER(is_kdtree_distance)
00092 HAS_MEMBER(is_vector_space_distance)
00093 
00094 struct DummyDistance
00095 {
00096     typedef float ElementType;
00097     typedef float ResultType;
00098 
00099     template <typename Iterator1, typename Iterator2>
00100     ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
00101     {
00102         return ResultType(0);
00103     }
00104 
00105     template <typename U, typename V>
00106     inline ResultType accum_dist(const U& a, const V& b, int) const
00107     {
00108         return ResultType(0);
00109     }
00110 };
00111 
00115 template<template <typename> class Index, typename Distance, typename ElemType>
00116 struct valid_combination
00117 {
00118     static const bool value = same_type<ElemType,typename Distance::ElementType>::value &&
00119                                 (!needs_kdtree_distance<Index<DummyDistance> >::value || is_kdtree_distance<Distance>::value) &&
00120                                 (!needs_vector_space_distance<Index<DummyDistance> >::value || is_kdtree_distance<Distance>::value || is_vector_space_distance<Distance>::value);
00121 
00122 };
00123 
00124 
00125 /*********************************************************
00126  * Create index
00127  **********************************************************/
00128 template <template<typename> class Index, typename Distance, typename T>
00129 inline NNIndex<Distance>* create_index_(rtflann::Matrix<T> data, const rtflann::IndexParams& params, const Distance& distance,
00130                 typename enable_if<valid_combination<Index,Distance,T>::value,void>::type* = 0)
00131 {
00132     return new Index<Distance>(data, params, distance);
00133 }
00134 
00135 template <template<typename> class Index, typename Distance, typename T>
00136 inline NNIndex<Distance>* create_index_(rtflann::Matrix<T> data, const rtflann::IndexParams& params, const Distance& distance,
00137                 typename disable_if<valid_combination<Index,Distance,T>::value,void>::type* = 0)
00138 {
00139     return NULL;
00140 }
00141 
00142 template<typename Distance>
00143 inline NNIndex<Distance>*
00144   create_index_by_type(const flann_algorithm_t index_type,
00145                 const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
00146 {
00147         typedef typename Distance::ElementType ElementType;
00148 
00149         NNIndex<Distance>* nnIndex;
00150 
00151         switch (index_type) {
00152 
00153         case FLANN_INDEX_LINEAR:
00154                 nnIndex = create_index_<LinearIndex,Distance,ElementType>(dataset, params, distance);
00155                 break;
00156         case FLANN_INDEX_KDTREE_SINGLE:
00157                 nnIndex = create_index_<KDTreeSingleIndex,Distance,ElementType>(dataset, params, distance);
00158                 break;
00159         case FLANN_INDEX_KDTREE:
00160                 nnIndex = create_index_<KDTreeIndex,Distance,ElementType>(dataset, params, distance);
00161                 break;
00164 #ifdef FLANN_USE_CUDA
00165         case FLANN_INDEX_KDTREE_CUDA:
00166                 nnIndex = create_index_<KDTreeCuda3dIndex,Distance,ElementType>(dataset, params, distance);
00167                 break;
00168 #endif
00169 
00170         case FLANN_INDEX_KMEANS:
00171                 nnIndex = create_index_<KMeansIndex,Distance,ElementType>(dataset, params, distance);
00172                 break;
00173         case FLANN_INDEX_COMPOSITE:
00174                 nnIndex = create_index_<CompositeIndex,Distance,ElementType>(dataset, params, distance);
00175                 break;
00176         case FLANN_INDEX_AUTOTUNED:
00177                 nnIndex = create_index_<AutotunedIndex,Distance,ElementType>(dataset, params, distance);
00178                 break;
00179         case FLANN_INDEX_HIERARCHICAL:
00180                 nnIndex = create_index_<HierarchicalClusteringIndex,Distance,ElementType>(dataset, params, distance);
00181                 break;
00182         case FLANN_INDEX_LSH:
00183                 nnIndex = create_index_<LshIndex,Distance,ElementType>(dataset, params, distance);
00184                 break;
00185         default:
00186                 throw FLANNException("Unknown index type");
00187         }
00188 
00189     if (nnIndex==NULL) {
00190         throw FLANNException("Unsupported index/distance combination");
00191     }
00192     return nnIndex;
00193 }
00194 
00195 }
00196 
00197 #endif /* RTABMAP_FLANN_ALL_INDICES_H_ */


rtabmap
Author(s): Mathieu Labbe
autogenerated on Thu Jun 6 2019 21:59:18