tmt6.cc
Go to the documentation of this file.
00001 
00002 //#define WANT_STREAM
00003 #define WANT_MATH
00004 
00005 
00006 #include "include.h"
00007 
00008 #include "newmatap.h"
00009 
00010 #include "tmt.h"
00011 
00012 #ifdef use_namespace
00013 using namespace NEWMAT;
00014 #endif
00015 
00016 
00017 /**************************** test program ******************************/
00018 
00019 
00020 // slow sort program
00021 
00022 static void SimpleSortDescending(Real* first, const int length)
00023 {
00024    int i = length;
00025    while (--i)
00026    {
00027       Real x = *first; Real* f = first; Real* g = f;
00028       int j = i;
00029       while (j--) if (x < *(++f)) { g = f; x = *g; }
00030       *g = *first; *first++ = x;
00031    }
00032 }
00033 
00034 static void TestSort(int n)
00035 {
00036    // make some data
00037    RowVector X(n);
00038    int i;
00039    for (i = 1; i <= n; i++)
00040       X(i) = sin((Real)i) + 0.3 * cos(i/5.0) - 0.6 * sin(i/7.0) + 0.2 * sin(2.0 * i);
00041    RowVector X_Sorted = X; SimpleSortDescending(X_Sorted.Store(), n);
00042    RowVector A = X + X.Reverse(); SimpleSortDescending(A.Store(), n);
00043 
00044    // test descending sort
00045 
00046    RowVector Y = X; SortDescending(Y); Y -= X_Sorted; Print(Y);
00047    Y = X_Sorted; SortDescending(Y); Y -= X_Sorted; Print(Y);
00048    Y = X_Sorted.Reverse(); SortDescending(Y); Y -= X_Sorted; Print(Y);
00049    Y = X + X.Reverse(); SortDescending(Y); Y -= A; Print(Y);
00050 
00051    // test ascending sort
00052 
00053    Y = X; SortAscending(Y); Y -= X_Sorted.Reverse(); Print(Y);
00054    Y = X_Sorted; SortAscending(Y); Y -= X_Sorted.Reverse(); Print(Y);
00055    Y = X_Sorted.Reverse(); SortAscending(Y); Y -= X_Sorted.Reverse(); Print(Y);
00056    Y = X + X.Reverse(); SortAscending(Y); Y -= A.Reverse(); Print(Y);
00057 }
00058 
00059 
00060 void trymat6()
00061 {
00062    Tracer et("Sixth test of Matrix package");
00063    Tracer::PrintTrace();
00064 
00065    int i,j;
00066 
00067 
00068    DiagonalMatrix D(6);
00069    UpperTriangularMatrix U(6);
00070    for (i=1;i<=6;i++) { for (j=i;j<=6;j++) U(i,j)=i*i*i-50; D(i,i)=i*i+i-10; }
00071    LowerTriangularMatrix L=(U*3.0).t();
00072    SymmetricMatrix S(6);
00073    for (i=1;i<=6;i++) for (j=i;j<=6;j++) S(i,j)=i*i+2.0+j;
00074    Matrix MD=D; Matrix ML=L; Matrix MU=U; Matrix MS=S;
00075    Matrix M(6,6);
00076    for (i=1;i<=6;i++) for (j=1;j<=6;j++) M(i,j)=i*j+i*i-10.0;  
00077    {
00078       Tracer et1("Stage 1");
00079       Print(Matrix(MS+(-MS)));
00080       Print(Matrix((S+M)-(MS+M)));
00081       Print(Matrix((M+U)-(M+MU)));
00082       Print(Matrix((M+L)-(M+ML)));
00083    }
00084    {
00085       Tracer et1("Stage 2");
00086       Print(Matrix((M+D)-(M+MD)));
00087       Print(Matrix((U+D)-(MU+MD)));
00088       Print(Matrix((D+L)-(ML+MD)));
00089       Print(Matrix((-U+D)+MU-MD));
00090       Print(Matrix((-L+D)+ML-MD));
00091    }
00092    {
00093       Tracer et1("Stage 3 - concatenate");
00094       RowVector A(5);
00095       A << 1 << 2 << 3 << 4 << 5;
00096       RowVector B(5);
00097       B << 3 << 1 << 4 << 1 << 5;
00098       Matrix C(3,5);
00099       C <<  2 <<  3 <<  5 <<  7 << 11
00100         << 13 << 17 << 19 << 23 << 29
00101         << 31 << 37 << 41 << 43 << 47;
00102       Matrix X1 = A & B & C;
00103       Matrix X2 = (A.t() | B.t() | C.t()).t();
00104       Matrix X3(5,5);
00105       X3.Row(1)=A; X3.Row(2)=B; X3.Rows(3,5)=C;
00106       Print(Matrix(X1-X2));
00107       Print(Matrix(X1-X3));
00108       LowerTriangularMatrix LT1; LT1 << (A & B & C);
00109       UpperTriangularMatrix UT1; UT1 << (A.t() | B.t() | C.t());
00110       Print(LowerTriangularMatrix(LT1-UT1.t()));
00111       DiagonalMatrix D1; D1 << (A.t() | B.t() | C.t());
00112       ColumnVector At = A.t();
00113       ColumnVector Bt = B.t();
00114       Matrix Ct = C.t();
00115       LowerTriangularMatrix LT2; LT2 << (At | Bt | Ct);
00116       UpperTriangularMatrix UT2; UT2 << (At.t() & Bt.t() & Ct.t());
00117       Matrix ABt = At | Bt;
00118       DiagonalMatrix D2; D2 << (ABt | Ct);
00119       Print(LowerTriangularMatrix(LT2-UT2.t()));
00120       Print(DiagonalMatrix(D1-D2));
00121       Print(Matrix(LT1+UT2-D2-X1));
00122       Matrix M1 = LT1 | UT2; Matrix M2 = UT1 & LT2;
00123       Print(Matrix(M1-M2.t()));
00124       M1 = UT2 | LT1; M2 = LT2 & UT1;
00125       Print(Matrix(M1-M2.t()));
00126       M1 = (LT1 | UT2) & (UT2 | LT1);
00127       M2 = (UT1 & LT2) | (LT2 & UT1);
00128       Print(Matrix(M1-M2.t()));
00129       SymmetricMatrix SM1; SM1 << (M1 + M1.t());
00130       SymmetricMatrix SM2; SM2 << ((SM1 | M1) & (M1.t() | SM1));
00131       Matrix M3(20,20);
00132       M3.SubMatrix(1,10,1,10) = SM1;
00133       M3.SubMatrix(1,10,11,20) = M1;
00134       M3.SubMatrix(11,20,1,10) = M2;
00135       M3.SubMatrix(11,20,11,20) = SM1;
00136       Print(Matrix(M3-SM2));
00137 
00138       SymmetricMatrix SM(15); SM = 0; SM.SymSubMatrix(1,10) = SM1;
00139       M3.ReSize(15,15); M3 = 0; M3.SubMatrix(1,10,1,10) = SM1;
00140       M3 -= SM; Print(M3);
00141       SM = 0; SM.SymSubMatrix(6,15) = SM1;
00142       M3.ReSize(15,15); M3 = 0; M3.SubMatrix(6,15,6,15) = SM1;
00143       M3 = M3.t() - SM; Print(M3);
00144    }
00145    {
00146       Tracer et1("Stage 4 - sort");
00147       TestSort(1); TestSort(2); TestSort(3); TestSort(4);
00148       TestSort(15); TestSort(16); TestSort(17); TestSort(18);
00149       TestSort(99); TestSort(100); TestSort(101);
00150    }
00151 
00152 
00153 //   cout << "\nEnd of sixth test\n";
00154 }
00155 


rl_agent
Author(s): Todd Hester
autogenerated on Thu Jun 6 2019 22:00:13