00001
00002
00003
00004
00005 #include "include.h"
00006
00007 #include "newmat.h"
00008
00009 #include "tmt.h"
00010
00011 #ifdef use_namespace
00012 using namespace NEWMAT;
00013 #endif
00014
00015
00016
00017
00018
00019 void trymat2()
00020 {
00021
00022 Tracer et("Second test of Matrix package");
00023 Tracer::PrintTrace();
00024
00025 int i,j;
00026
00027 Matrix M(3,5);
00028 for (i=1; i<=3; i++) for (j=1; j<=5; j++) M(i,j) = 100*i + j;
00029 Matrix X(8,10);
00030 for (i=1; i<=8; i++) for (j=1; j<=10; j++) X(i,j) = 1000*i + 10*j;
00031 Matrix Y = X; Matrix Z = X;
00032 { X.SubMatrix(2,4,3,7) << M; }
00033 for (i=1; i<=3; i++) for (j=1; j<=5; j++) Y(i+1,j+2) = 100*i + j;
00034 Print(Matrix(X-Y));
00035
00036
00037 Real a[15]; Real* r = a;
00038 for (i=1; i<=3; i++) for (j=1; j<=5; j++) *r++ = 100*i + j;
00039 { Z.SubMatrix(2,4,3,7) << a; }
00040 Print(Matrix(Z-Y));
00041
00042 { M=33; X.SubMatrix(2,4,3,7) << M; }
00043 { Z.SubMatrix(2,4,3,7) = 33; }
00044 Print(Matrix(Z-X));
00045
00046 for (i=1; i<=8; i++) for (j=1; j<=10; j++) X(i,j) = 1000*i + 10*j;
00047 Y = X;
00048 UpperTriangularMatrix U(5);
00049 for (i=1; i<=5; i++) for (j=i; j<=5; j++) U(i,j) = 100*i + j;
00050 { X.SubMatrix(3,7,5,9) << U; }
00051 for (i=1; i<=5; i++) for (j=i; j<=5; j++) Y(i+2,j+4) = 100*i + j;
00052 for (i=1; i<=5; i++) for (j=1; j<i; j++) Y(i+2,j+4) = 0.0;
00053 Print(Matrix(X-Y));
00054 for (i=1; i<=8; i++) for (j=1; j<=10; j++) X(i,j) = 1000*i + 10*j;
00055 Y = X;
00056 for (i=1; i<=5; i++) for (j=i; j<=5; j++) U(i,j) = 100*i + j;
00057 { X.SubMatrix(3,7,5,9).Inject(U); }
00058 for (i=1; i<=5; i++) for (j=i; j<=5; j++) Y(i+2,j+4) = 100*i + j;
00059 Print(Matrix(X-Y));
00060
00061
00062
00063 {
00064 ColumnVector V(100);
00065 for (i=1;i<=100;i++) V(i) = i*i+i;
00066 V = V.Rows(1,50);
00067
00068 {
00069 V.Release(); ColumnVector VX=V;
00070 V.ReSize(100); V = 0.0; V.Rows(1,50)=VX;
00071 }
00072
00073 M=V; M=100;
00074 for (i=1;i<=50;i++) V(i) -= i*i+i;
00075 Print(V);
00076
00077
00078
00079 ColumnVector CV1(10); CV1 = 10;
00080 ColumnVector CV2(5); CV2.ReSize(10,1); CV2 = 10;
00081 V = CV1-CV2; Print(V);
00082
00083 RowVector RV1(20); RV1 = 100;
00084 RowVector RV2; RV2.ReSize(1,20); RV2 = 100;
00085 V = (RV1-RV2).t(); Print(V);
00086
00087 X.ReSize(4,7);
00088 for (i=1; i<=4; i++) for (j=1; j<=7; j++) X(i,j) = 1000*i + 10*j;
00089 Y = 10.5 * X;
00090 Z = 7.25 - Y;
00091 M = Z + X * 10.5 - 7.25;
00092 Print(M);
00093 Y = 2.5 * X;
00094 Z = 9.25 + Y;
00095 M = Z - X * 2.5 - 9.25;
00096 Print(M);
00097 U.ReSize(8);
00098 for (i=1; i<=8; i++) for (j=i; j<=8; j++) U(i,j) = 100*i + j;
00099 Y = 100 - U;
00100 M = Y + U - 100;
00101 Print(M);
00102 }
00103
00104 {
00105 SymmetricMatrix S,T;
00106
00107 S << (U + U.t());
00108 T = 100 - S; M = T + S - 100; Print(M);
00109 T = 100 - 2 * S; M = T + S * 2 - 100; Print(M);
00110 X = 100 - 2 * S; M = X + S * 2 - 100; Print(M);
00111 T = S; T = 100 - T; M = T + S - 100; Print(M);
00112 }
00113
00114
00115 {
00116 ColumnVector CV1; RowVector RV1;
00117 Matrix* MX; MX = new Matrix; if (!MX) Throw(Bad_alloc("New fails "));
00118 MX->ReSize(10,20);
00119 for (i = 1; i <= 10; i++) for (j = 1; j <= 20; j++)
00120 (*MX)(i,j) = 100 * i + j;
00121 ColumnVector* CV = new ColumnVector(10);
00122 if (!CV) Throw(Bad_alloc("New fails "));
00123 *CV << 1 << 2 << 3 << 4 << 5 << 6 << 7 << 8 << 9 << 10;
00124 RowVector* RV = new RowVector(CV->t() | (*CV + 10).t());
00125 if (!RV) Throw(Bad_alloc("New fails "));
00126 CV1 = ColumnVector(10); CV1 = 1; RV1 = RowVector(20); RV1 = 1;
00127 *MX -= 100 * *CV * RV1 + CV1 * *RV;
00128 Print(*MX);
00129 delete MX; delete CV; delete RV;
00130 }
00131
00132
00133
00134 {
00135 ColumnVector dims(16);
00136 Matrix M1; Matrix M2 = M1; Print(M2);
00137 dims(1) = M2.Nrows(); dims(2) = M2.Ncols();
00138 dims(3) = (Real)(unsigned long)M2.Store(); dims(4) = M2.Storage();
00139 M2 = M1;
00140 dims(5) = M2.Nrows(); dims(6) = M2.Ncols();
00141 dims(7) = (Real)(unsigned long)M2.Store(); dims(8) = M2.Storage();
00142 M2.ReSize(10,20); M2.CleanUp();
00143 dims(9) = M2.Nrows(); dims(10) = M2.Ncols();
00144 dims(11) = (Real)(unsigned long)M2.Store(); dims(12) = M2.Storage();
00145 M2.ReSize(20,10); M2.ReSize(0,0);
00146 dims(13) = M2.Nrows(); dims(14) = M2.Ncols();
00147 dims(15) = (Real)(unsigned long)M2.Store(); dims(16) = M2.Storage();
00148 Print(dims);
00149 }
00150
00151 {
00152 ColumnVector dims(16);
00153 ColumnVector M1; ColumnVector M2 = M1; Print(M2);
00154 dims(1) = M2.Nrows(); dims(2) = M2.Ncols()-1;
00155 dims(3) = (Real)(unsigned long)M2.Store(); dims(4) = M2.Storage();
00156 M2 = M1;
00157 dims(5) = M2.Nrows(); dims(6) = M2.Ncols()-1;
00158 dims(7) = (Real)(unsigned long)M2.Store(); dims(8) = M2.Storage();
00159 M2.ReSize(10); M2.CleanUp();
00160 dims(9) = M2.Nrows(); dims(10) = M2.Ncols()-1;
00161 dims(11) = (Real)(unsigned long)M2.Store(); dims(12) = M2.Storage();
00162 M2.ReSize(10); M2.ReSize(0);
00163 dims(13) = M2.Nrows(); dims(14) = M2.Ncols()-1;
00164 dims(15) = (Real)(unsigned long)M2.Store(); dims(16) = M2.Storage();
00165 Print(dims);
00166 }
00167
00168 {
00169 ColumnVector dims(16);
00170 RowVector M1; RowVector M2 = M1; Print(M2);
00171 dims(1) = M2.Nrows()-1; dims(2) = M2.Ncols();
00172 dims(3) = (Real)(unsigned long)M2.Store(); dims(4) = M2.Storage();
00173 M2 = M1;
00174 dims(5) = M2.Nrows()-1; dims(6) = M2.Ncols();
00175 dims(7) = (Real)(unsigned long)M2.Store(); dims(8) = M2.Storage();
00176 M2.ReSize(10); M2.CleanUp();
00177 dims(9) = M2.Nrows()-1; dims(10) = M2.Ncols();
00178 dims(11) = (Real)(unsigned long)M2.Store(); dims(12) = M2.Storage();
00179 M2.ReSize(10); M2.ReSize(0);
00180 dims(13) = M2.Nrows()-1; dims(14) = M2.Ncols();
00181 dims(15) = (Real)(unsigned long)M2.Store(); dims(16) = M2.Storage();
00182 Print(dims);
00183 }
00184
00185
00186 {
00187 Matrix M;
00188 IdentityMatrix I(10); DiagonalMatrix D(10); D = 1;
00189 M = I; M -= D; Print(M);
00190 D -= I; Print(D);
00191 ColumnVector X(8);
00192 D = 1;
00193 X(1) = Sum(D) - Sum(I);
00194 X(2) = SumAbsoluteValue(D) - SumAbsoluteValue(I);
00195 X(3) = SumSquare(D) - SumSquare(I);
00196 X(4) = Trace(D) - Trace(I);
00197 X(5) = Maximum(D) - Maximum(I);
00198 X(6) = Minimum(D) - Minimum(I);
00199 X(7) = LogDeterminant(D).LogValue() - LogDeterminant(I).LogValue();
00200 X(8) = LogDeterminant(D).Sign() - LogDeterminant(I).Sign();
00201 Clean(X,0.00000001); Print(X);
00202
00203 for (i = 1; i <= 10; i++) for (j = 1; j <= 10; j++)
00204 M(i,j) = 100 * i + j;
00205 Matrix N;
00206 N = M * I - M; Print(N);
00207 N = I * M - M; Print(N);
00208 N = M * I.i() - M; Print(N);
00209 N = I.i() * M - M; Print(N);
00210 N = I.i(); N -= I; Print(N);
00211 N = I.t(); N -= I; Print(N);
00212 N = I.t(); N += (-I); Print(N);
00213 D = I; N = D; D = 1; N -= D; Print(N);
00214 N = I; D = 1; N -= D; Print(N);
00215 N = M + 2 * IdentityMatrix(10); N -= (M + 2 * D); Print(N);
00216
00217 I *= 4;
00218
00219 D = 4;
00220
00221 X.ReSize(14);
00222 X(1) = Sum(D) - Sum(I);
00223 X(2) = SumAbsoluteValue(D) - SumAbsoluteValue(I);
00224 X(3) = SumSquare(D) - SumSquare(I);
00225 X(4) = Trace(D) - Trace(I);
00226 X(5) = Maximum(D) - Maximum(I);
00227 X(6) = Minimum(D) - Minimum(I);
00228 X(7) = LogDeterminant(D).LogValue() - LogDeterminant(I).LogValue();
00229 X(8) = LogDeterminant(D).Sign() - LogDeterminant(I).Sign();
00230 int i,j;
00231 X(9) = I.Maximum1(i) - 4; X(10) = i-1;
00232 X(11) = I.Maximum2(i,j) - 4; X(12) = i-10; X(13) = j-10;
00233 X(14) = I.Nrows() - 10;
00234 Clean(X,0.00000001); Print(X);
00235
00236
00237 N = D.i();
00238 N += I / (-16);
00239 Print(N);
00240 N = M * I - 4 * M; Print(N);
00241 N = I * M - 4 * M; Print(N);
00242 N = M * I.i() - 0.25 * M; Print(N);
00243 N = I.i() * M - 0.25 * M; Print(N);
00244 N = I.i(); N -= I * 0.0625; Print(N);
00245 N = I.i(); N = N - 0.0625 * I; Print(N);
00246 N = I.t(); N -= I; Print(N);
00247 D = I * 2; N = D; D = 1; N -= 8 * D; Print(N);
00248 N = I * 2; N -= 8 * D; Print(N);
00249 N = 0.5 * I + M; N -= M; N -= 2.0 * D; Print(N);
00250
00251 IdentityMatrix J(10); J = 8;
00252 D = 4;
00253 DiagonalMatrix E(10); E = 8;
00254 N = (I + J) - (D + E); Print(N);
00255 N = (5*I + 3*J) - (5*D + 3*E); Print(N);
00256 N = (-I + J) - (-D + E); Print(N);
00257 N = (I - J) - (D - E); Print(N);
00258 N = (I | J) - (D | E); Print(N);
00259 N = (I & J) - (D & E); Print(N);
00260 N = SP(I,J) - SP(D,E); Print(N);
00261 N = D.SubMatrix(2,5,3,8) - I.SubMatrix(2,5,3,8); Print(N);
00262
00263 N = M; N.Inject(I); D << M; N -= (M + I); N += D; Print(N);
00264 D = 4;
00265
00266 IdentityMatrix K = I.i()*7 - J.t()/4;
00267 N = D.i() * 7 - E / 4 - K; Print(N);
00268 K = I * J; N = K - D * E; Print(N);
00269 N = I * J; N -= D * E; Print(N);
00270 K = 5*I - 3*J;
00271 N = K - (5*D - 3*E); Print(N);
00272 K = I.i(); N = K - 0.0625 * I; Print(N);
00273 K = I.t(); N = K - I; Print(N);
00274
00275
00276 K.ReSize(20); D.ReSize(20); D = 1;
00277 D -= K; Print(D);
00278
00279 I.ReSize(3); J.ReSize(3); K = I * J; N = K - I; Print(N);
00280 K << D; N = K - D; Print(N);
00281
00282
00283 }
00284
00285
00286
00287 }