region_layer.c
Go to the documentation of this file.
00001 #include "region_layer.h"
00002 #include "activations.h"
00003 #include "blas.h"
00004 #include "box.h"
00005 #include "cuda.h"
00006 #include "utils.h"
00007 #include <stdio.h>
00008 #include <assert.h>
00009 #include <string.h>
00010 #include <stdlib.h>
00011 
00012 #define DOABS 1
00013 
00014 region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
00015 {
00016     region_layer l = {0};
00017     l.type = REGION;
00018 
00019     l.n = n;
00020     l.batch = batch;
00021     l.h = h;
00022     l.w = w;
00023     l.classes = classes;
00024     l.coords = coords;
00025     l.cost = calloc(1, sizeof(float));
00026     l.biases = calloc(n*2, sizeof(float));
00027     l.bias_updates = calloc(n*2, sizeof(float));
00028     l.outputs = h*w*n*(classes + coords + 1);
00029     l.inputs = l.outputs;
00030     l.truths = 30*(5);
00031     l.delta = calloc(batch*l.outputs, sizeof(float));
00032     l.output = calloc(batch*l.outputs, sizeof(float));
00033     int i;
00034     for(i = 0; i < n*2; ++i){
00035         l.biases[i] = .5;
00036     }
00037 
00038     l.forward = forward_region_layer;
00039     l.backward = backward_region_layer;
00040 #ifdef GPU
00041     l.forward_gpu = forward_region_layer_gpu;
00042     l.backward_gpu = backward_region_layer_gpu;
00043     l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
00044     l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
00045 #endif
00046 
00047     fprintf(stderr, "detection\n");
00048     srand(0);
00049 
00050     return l;
00051 }
00052 
00053 void resize_region_layer(layer *l, int w, int h)
00054 {
00055     l->w = w;
00056     l->h = h;
00057 
00058     l->outputs = h*w*l->n*(l->classes + l->coords + 1);
00059     l->inputs = l->outputs;
00060 
00061     l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
00062     l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
00063 
00064 #ifdef GPU
00065     cuda_free(l->delta_gpu);
00066     cuda_free(l->output_gpu);
00067 
00068     l->delta_gpu =     cuda_make_array(l->delta, l->batch*l->outputs);
00069     l->output_gpu =    cuda_make_array(l->output, l->batch*l->outputs);
00070 #endif
00071 }
00072 
00073 box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h)
00074 {
00075     box b;
00076     b.x = (i + logistic_activate(x[index + 0])) / w;
00077     b.y = (j + logistic_activate(x[index + 1])) / h;
00078     b.w = exp(x[index + 2]) * biases[2*n];
00079     b.h = exp(x[index + 3]) * biases[2*n+1];
00080     if(DOABS){
00081         b.w = exp(x[index + 2]) * biases[2*n]   / w;
00082         b.h = exp(x[index + 3]) * biases[2*n+1] / h;
00083     }
00084     return b;
00085 }
00086 
00087 float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale)
00088 {
00089     box pred = get_region_box(x, biases, n, index, i, j, w, h);
00090     float iou = box_iou(pred, truth);
00091 
00092     float tx = (truth.x*w - i);
00093     float ty = (truth.y*h - j);
00094     float tw = log(truth.w / biases[2*n]);
00095     float th = log(truth.h / biases[2*n + 1]);
00096     if(DOABS){
00097         tw = log(truth.w*w / biases[2*n]);
00098         th = log(truth.h*h / biases[2*n + 1]);
00099     }
00100 
00101     delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
00102     delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
00103     delta[index + 2] = scale * (tw - x[index + 2]);
00104     delta[index + 3] = scale * (th - x[index + 3]);
00105     return iou;
00106 }
00107 
00108 void delta_region_class(float *output, float *delta, int index, int class, int classes, tree *hier, float scale, float *avg_cat)
00109 {
00110     int i, n;
00111     if(hier){
00112         float pred = 1;
00113         while(class >= 0){
00114             pred *= output[index + class];
00115             int g = hier->group[class];
00116             int offset = hier->group_offset[g];
00117             for(i = 0; i < hier->group_size[g]; ++i){
00118                 delta[index + offset + i] = scale * (0 - output[index + offset + i]);
00119             }
00120             delta[index + class] = scale * (1 - output[index + class]);
00121 
00122             class = hier->parent[class];
00123         }
00124         *avg_cat += pred;
00125     } else {
00126         for(n = 0; n < classes; ++n){
00127             delta[index + n] = scale * (((n == class)?1 : 0) - output[index + n]);
00128             if(n == class) *avg_cat += output[index + n];
00129         }
00130     }
00131 }
00132 
00133 float logit(float x)
00134 {
00135     return log(x/(1.-x));
00136 }
00137 
00138 float tisnan(float x)
00139 {
00140     return (x != x);
00141 }
00142 
00143 void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output);
00144 void forward_region_layer(const region_layer l, network_state state)
00145 {
00146     int i,j,b,t,n;
00147     int size = l.coords + l.classes + 1;
00148     memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
00149     #ifndef GPU
00150     flatten(l.output, l.w*l.h, size*l.n, l.batch, 1);
00151     #endif
00152     for (b = 0; b < l.batch; ++b){
00153         for(i = 0; i < l.h*l.w*l.n; ++i){
00154             int index = size*i + b*l.outputs;
00155             l.output[index + 4] = logistic_activate(l.output[index + 4]);
00156         }
00157     }
00158 
00159 
00160 #ifndef GPU
00161     if (l.softmax_tree){
00162         for (b = 0; b < l.batch; ++b){
00163             for(i = 0; i < l.h*l.w*l.n; ++i){
00164                 int index = size*i + b*l.outputs;
00165                 softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5);
00166             }
00167         }
00168     } else if (l.softmax){
00169         for (b = 0; b < l.batch; ++b){
00170             for(i = 0; i < l.h*l.w*l.n; ++i){
00171                 int index = size*i + b*l.outputs;
00172                 softmax(l.output + index + 5, l.classes, 1, l.output + index + 5);
00173             }
00174         }
00175     }
00176 #endif
00177     if(!state.train) return;
00178     memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
00179     float avg_iou = 0;
00180     float recall = 0;
00181     float avg_cat = 0;
00182     float avg_obj = 0;
00183     float avg_anyobj = 0;
00184     int count = 0;
00185     int class_count = 0;
00186     *(l.cost) = 0;
00187     for (b = 0; b < l.batch; ++b) {
00188         if(l.softmax_tree){
00189             int onlyclass = 0;
00190             for(t = 0; t < 30; ++t){
00191                 box truth = float_to_box(state.truth + t*5 + b*l.truths);
00192                 if(!truth.x) break;
00193                 int class = state.truth[t*5 + b*l.truths + 4];
00194                 float maxp = 0;
00195                 int maxi = 0;
00196                 if(truth.x > 100000 && truth.y > 100000){
00197                     for(n = 0; n < l.n*l.w*l.h; ++n){
00198                         int index = size*n + b*l.outputs + 5;
00199                         float p = get_hierarchy_probability(l.output + index, l.softmax_tree, class);
00200                         if(p > maxp){
00201                             maxp = p;
00202                             maxi = n;
00203                         }
00204                     }
00205                     int index = size*maxi + b*l.outputs + 5;
00206                     delta_region_class(l.output, l.delta, index, class, l.classes, l.softmax_tree, l.class_scale, &avg_cat);
00207                     ++class_count;
00208                     onlyclass = 1;
00209                     break;
00210                 }
00211             }
00212             if(onlyclass) continue;
00213         }
00214         for (j = 0; j < l.h; ++j) {
00215             for (i = 0; i < l.w; ++i) {
00216                 for (n = 0; n < l.n; ++n) {
00217                     int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
00218                     box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
00219                     float best_iou = 0;
00220                     int best_class = -1;
00221                     for(t = 0; t < 30; ++t){
00222                         box truth = float_to_box(state.truth + t*5 + b*l.truths);
00223                         if(!truth.x) break;
00224                         float iou = box_iou(pred, truth);
00225                         if (iou > best_iou) {
00226                             best_class = state.truth[t*5 + b*l.truths + 4];
00227                             best_iou = iou;
00228                         }
00229                     }
00230                     avg_anyobj += l.output[index + 4];
00231                     l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
00232                     if(l.classfix == -1) l.delta[index + 4] = l.noobject_scale * ((best_iou - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
00233                     else{
00234                         if (best_iou > l.thresh) {
00235                             l.delta[index + 4] = 0;
00236                             if(l.classfix > 0){
00237                                 delta_region_class(l.output, l.delta, index + 5, best_class, l.classes, l.softmax_tree, l.class_scale*(l.classfix == 2 ? l.output[index + 4] : 1), &avg_cat);
00238                                 ++class_count;
00239                             }
00240                         }
00241                     }
00242 
00243                     if(*(state.net.seen) < 12800){
00244                         box truth = {0};
00245                         truth.x = (i + .5)/l.w;
00246                         truth.y = (j + .5)/l.h;
00247                         truth.w = l.biases[2*n];
00248                         truth.h = l.biases[2*n+1];
00249                         if(DOABS){
00250                             truth.w = l.biases[2*n]/l.w;
00251                             truth.h = l.biases[2*n+1]/l.h;
00252                         }
00253                         delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01);
00254                     }
00255                 }
00256             }
00257         }
00258         for(t = 0; t < 30; ++t){
00259             box truth = float_to_box(state.truth + t*5 + b*l.truths);
00260 
00261             if(!truth.x) break;
00262             float best_iou = 0;
00263             int best_index = 0;
00264             int best_n = 0;
00265             i = (truth.x * l.w);
00266             j = (truth.y * l.h);
00267             //printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h);
00268             box truth_shift = truth;
00269             truth_shift.x = 0;
00270             truth_shift.y = 0;
00271             //printf("index %d %d\n",i, j);
00272             for(n = 0; n < l.n; ++n){
00273                 int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
00274                 box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
00275                 if(l.bias_match){
00276                     pred.w = l.biases[2*n];
00277                     pred.h = l.biases[2*n+1];
00278                     if(DOABS){
00279                         pred.w = l.biases[2*n]/l.w;
00280                         pred.h = l.biases[2*n+1]/l.h;
00281                     }
00282                 }
00283                 //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
00284                 pred.x = 0;
00285                 pred.y = 0;
00286                 float iou = box_iou(pred, truth_shift);
00287                 if (iou > best_iou){
00288                     best_index = index;
00289                     best_iou = iou;
00290                     best_n = n;
00291                 }
00292             }
00293             //printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h);
00294 
00295             float iou = delta_region_box(truth, l.output, l.biases, best_n, best_index, i, j, l.w, l.h, l.delta, l.coord_scale);
00296             if(iou > .5) recall += 1;
00297             avg_iou += iou;
00298 
00299             //l.delta[best_index + 4] = iou - l.output[best_index + 4];
00300             avg_obj += l.output[best_index + 4];
00301             l.delta[best_index + 4] = l.object_scale * (1 - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
00302             if (l.rescore) {
00303                 l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
00304             }
00305 
00306 
00307             int class = state.truth[t*5 + b*l.truths + 4];
00308             if (l.map) class = l.map[class];
00309             delta_region_class(l.output, l.delta, best_index + 5, class, l.classes, l.softmax_tree, l.class_scale, &avg_cat);
00310             ++count;
00311             ++class_count;
00312         }
00313     }
00314     //printf("\n");
00315     #ifndef GPU
00316     flatten(l.delta, l.w*l.h, size*l.n, l.batch, 0);
00317     #endif
00318     *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
00319     printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f,  count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
00320 }
00321 
00322 void backward_region_layer(const region_layer l, network_state state)
00323 {
00324     axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
00325 }
00326 
00327 void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
00328 {
00329     int i,j,n;
00330     float *predictions = l.output;
00331     for (i = 0; i < l.w*l.h; ++i){
00332         int row = i / l.w;
00333         int col = i % l.w;
00334         for(n = 0; n < l.n; ++n){
00335             int index = i*l.n + n;
00336             int p_index = index * (l.classes + 5) + 4;
00337             float scale = predictions[p_index];
00338             if(l.classfix == -1 && scale < .5) scale = 0;
00339             int box_index = index * (l.classes + 5);
00340             boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);
00341             boxes[index].x *= w;
00342             boxes[index].y *= h;
00343             boxes[index].w *= w;
00344             boxes[index].h *= h;
00345 
00346             int class_index = index * (l.classes + 5) + 5;
00347             if(l.softmax_tree){
00348 
00349                 hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);
00350                 int found = 0;
00351                 for(j = l.classes - 1; j >= 0; --j){
00352                     if(1){
00353                         if(!found && predictions[class_index + j] > .5){
00354                             found = 1;
00355                         } else {
00356                             predictions[class_index + j] = 0;
00357                         }
00358                         float prob = predictions[class_index+j];
00359                         probs[index][j] = (scale > thresh) ? prob : 0;
00360                     }else{
00361                         float prob = scale*predictions[class_index+j];
00362                         probs[index][j] = (prob > thresh) ? prob : 0;
00363                     }
00364                 }
00365             }else{
00366                 for(j = 0; j < l.classes; ++j){
00367                     float prob = scale*predictions[class_index+j];
00368                     probs[index][j] = (prob > thresh) ? prob : 0;
00369                 }
00370             }
00371             if(only_objectness){
00372                 probs[index][0] = scale;
00373             }
00374         }
00375     }
00376 }
00377 
00378 #ifdef GPU
00379 
00380 void forward_region_layer_gpu(const region_layer l, network_state state)
00381 {
00382     /*
00383        if(!state.train){
00384        copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
00385        return;
00386        }
00387      */
00388     flatten_ongpu(state.input, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 1, l.output_gpu);
00389     if(l.softmax_tree){
00390         int i;
00391         int count = 5;
00392         for (i = 0; i < l.softmax_tree->groups; ++i) {
00393             int group_size = l.softmax_tree->group_size[i];
00394             softmax_gpu(l.output_gpu+count, group_size, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + count);
00395             count += group_size;
00396         }
00397     }else if (l.softmax){
00398         softmax_gpu(l.output_gpu+5, l.classes, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + 5);
00399     }
00400 
00401     float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
00402     float *truth_cpu = 0;
00403     if(state.truth){
00404         int num_truth = l.batch*l.truths;
00405         truth_cpu = calloc(num_truth, sizeof(float));
00406         cuda_pull_array(state.truth, truth_cpu, num_truth);
00407     }
00408     cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
00409     network_state cpu_state = state;
00410     cpu_state.train = state.train;
00411     cpu_state.truth = truth_cpu;
00412     cpu_state.input = in_cpu;
00413     forward_region_layer(l, cpu_state);
00414     //cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
00415     free(cpu_state.input);
00416     if(!state.train) return;
00417     cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
00418     if(cpu_state.truth) free(cpu_state.truth);
00419 }
00420 
00421 void backward_region_layer_gpu(region_layer l, network_state state)
00422 {
00423     flatten_ongpu(l.delta_gpu, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 0, state.delta);
00424 }
00425 #endif
00426 


rail_object_detector
Author(s):
autogenerated on Sat Jun 8 2019 20:26:30