detection_layer.c
Go to the documentation of this file.
00001 #include "detection_layer.h"
00002 #include "activations.h"
00003 #include "softmax_layer.h"
00004 #include "blas.h"
00005 #include "box.h"
00006 #include "cuda.h"
00007 #include "utils.h"
00008 #include <stdio.h>
00009 #include <assert.h>
00010 #include <string.h>
00011 #include <stdlib.h>
00012 
00013 detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore)
00014 {
00015     detection_layer l = {0};
00016     l.type = DETECTION;
00017 
00018     l.n = n;
00019     l.batch = batch;
00020     l.inputs = inputs;
00021     l.classes = classes;
00022     l.coords = coords;
00023     l.rescore = rescore;
00024     l.side = side;
00025     l.w = side;
00026     l.h = side;
00027     assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs);
00028     l.cost = calloc(1, sizeof(float));
00029     l.outputs = l.inputs;
00030     l.truths = l.side*l.side*(1+l.coords+l.classes);
00031     l.output = calloc(batch*l.outputs, sizeof(float));
00032     l.delta = calloc(batch*l.outputs, sizeof(float));
00033 
00034     l.forward = forward_detection_layer;
00035     l.backward = backward_detection_layer;
00036 #ifdef GPU
00037     l.forward_gpu = forward_detection_layer_gpu;
00038     l.backward_gpu = backward_detection_layer_gpu;
00039     l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
00040     l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
00041 #endif
00042 
00043     fprintf(stderr, "Detection Layer\n");
00044     srand(0);
00045 
00046     return l;
00047 }
00048 
00049 void forward_detection_layer(const detection_layer l, network_state state)
00050 {
00051     int locations = l.side*l.side;
00052     int i,j;
00053     memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
00054     //if(l.reorg) reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
00055     int b;
00056     if (l.softmax){
00057         for(b = 0; b < l.batch; ++b){
00058             int index = b*l.inputs;
00059             for (i = 0; i < locations; ++i) {
00060                 int offset = i*l.classes;
00061                 softmax(l.output + index + offset, l.classes, 1,
00062                         l.output + index + offset);
00063             }
00064         }
00065     }
00066     if(state.train){
00067         float avg_iou = 0;
00068         float avg_cat = 0;
00069         float avg_allcat = 0;
00070         float avg_obj = 0;
00071         float avg_anyobj = 0;
00072         int count = 0;
00073         *(l.cost) = 0;
00074         int size = l.inputs * l.batch;
00075         memset(l.delta, 0, size * sizeof(float));
00076         for (b = 0; b < l.batch; ++b){
00077             int index = b*l.inputs;
00078             for (i = 0; i < locations; ++i) {
00079                 int truth_index = (b*locations + i)*(1+l.coords+l.classes);
00080                 int is_obj = state.truth[truth_index];
00081                 for (j = 0; j < l.n; ++j) {
00082                     int p_index = index + locations*l.classes + i*l.n + j;
00083                     l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]);
00084                     *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2);
00085                     avg_anyobj += l.output[p_index];
00086                 }
00087 
00088                 int best_index = -1;
00089                 float best_iou = 0;
00090                 float best_rmse = 20;
00091 
00092                 if (!is_obj){
00093                     continue;
00094                 }
00095 
00096                 int class_index = index + i*l.classes;
00097                 for(j = 0; j < l.classes; ++j) {
00098                     l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]);
00099                     *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2);
00100                     if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j];
00101                     avg_allcat += l.output[class_index+j];
00102                 }
00103 
00104                 box truth = float_to_box(state.truth + truth_index + 1 + l.classes);
00105                 truth.x /= l.side;
00106                 truth.y /= l.side;
00107 
00108                 for(j = 0; j < l.n; ++j){
00109                     int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords;
00110                     box out = float_to_box(l.output + box_index);
00111                     out.x /= l.side;
00112                     out.y /= l.side;
00113 
00114                     if (l.sqrt){
00115                         out.w = out.w*out.w;
00116                         out.h = out.h*out.h;
00117                     }
00118 
00119                     float iou  = box_iou(out, truth);
00120                     //iou = 0;
00121                     float rmse = box_rmse(out, truth);
00122                     if(best_iou > 0 || iou > 0){
00123                         if(iou > best_iou){
00124                             best_iou = iou;
00125                             best_index = j;
00126                         }
00127                     }else{
00128                         if(rmse < best_rmse){
00129                             best_rmse = rmse;
00130                             best_index = j;
00131                         }
00132                     }
00133                 }
00134 
00135                 if(l.forced){
00136                     if(truth.w*truth.h < .1){
00137                         best_index = 1;
00138                     }else{
00139                         best_index = 0;
00140                     }
00141                 }
00142                 if(l.random && *(state.net.seen) < 64000){
00143                     best_index = rand()%l.n;
00144                 }
00145 
00146                 int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
00147                 int tbox_index = truth_index + 1 + l.classes;
00148 
00149                 box out = float_to_box(l.output + box_index);
00150                 out.x /= l.side;
00151                 out.y /= l.side;
00152                 if (l.sqrt) {
00153                     out.w = out.w*out.w;
00154                     out.h = out.h*out.h;
00155                 }
00156                 float iou  = box_iou(out, truth);
00157 
00158                 //printf("%d,", best_index);
00159                 int p_index = index + locations*l.classes + i*l.n + best_index;
00160                 *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2);
00161                 *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2);
00162                 avg_obj += l.output[p_index];
00163                 l.delta[p_index] = l.object_scale * (1.-l.output[p_index]);
00164 
00165                 if(l.rescore){
00166                     l.delta[p_index] = l.object_scale * (iou - l.output[p_index]);
00167                 }
00168 
00169                 l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]);
00170                 l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]);
00171                 l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]);
00172                 l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]);
00173                 if(l.sqrt){
00174                     l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]);
00175                     l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]);
00176                 }
00177 
00178                 *(l.cost) += pow(1-iou, 2);
00179                 avg_iou += iou;
00180                 ++count;
00181             }
00182         }
00183 
00184         if(0){
00185             float *costs = calloc(l.batch*locations*l.n, sizeof(float));
00186             for (b = 0; b < l.batch; ++b) {
00187                 int index = b*l.inputs;
00188                 for (i = 0; i < locations; ++i) {
00189                     for (j = 0; j < l.n; ++j) {
00190                         int p_index = index + locations*l.classes + i*l.n + j;
00191                         costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index];
00192                     }
00193                 }
00194             }
00195             int indexes[100];
00196             top_k(costs, l.batch*locations*l.n, 100, indexes);
00197             float cutoff = costs[indexes[99]];
00198             for (b = 0; b < l.batch; ++b) {
00199                 int index = b*l.inputs;
00200                 for (i = 0; i < locations; ++i) {
00201                     for (j = 0; j < l.n; ++j) {
00202                         int p_index = index + locations*l.classes + i*l.n + j;
00203                         if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0;
00204                     }
00205                 }
00206             }
00207             free(costs);
00208         }
00209 
00210 
00211         *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
00212 
00213 
00214         printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
00215         //if(l.reorg) reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
00216     }
00217 }
00218 
00219 void backward_detection_layer(const detection_layer l, network_state state)
00220 {
00221     axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
00222 }
00223 
00224 void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
00225 {
00226     int i,j,n;
00227     float *predictions = l.output;
00228     //int per_cell = 5*num+classes;
00229     for (i = 0; i < l.side*l.side; ++i){
00230         int row = i / l.side;
00231         int col = i % l.side;
00232         for(n = 0; n < l.n; ++n){
00233             int index = i*l.n + n;
00234             int p_index = l.side*l.side*l.classes + i*l.n + n;
00235             float scale = predictions[p_index];
00236             int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4;
00237             boxes[index].x = (predictions[box_index + 0] + col) / l.side * w;
00238             boxes[index].y = (predictions[box_index + 1] + row) / l.side * h;
00239             boxes[index].w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w;
00240             boxes[index].h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h;
00241             for(j = 0; j < l.classes; ++j){
00242                 int class_index = i*l.classes;
00243                 float prob = scale*predictions[class_index+j];
00244                 probs[index][j] = (prob > thresh) ? prob : 0;
00245             }
00246             if(only_objectness){
00247                 probs[index][0] = scale;
00248             }
00249         }
00250     }
00251 }
00252 
00253 #ifdef GPU
00254 
00255 void forward_detection_layer_gpu(const detection_layer l, network_state state)
00256 {
00257     if(!state.train){
00258         copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
00259         return;
00260     }
00261 
00262     float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
00263     float *truth_cpu = 0;
00264     if(state.truth){
00265         int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes);
00266         truth_cpu = calloc(num_truth, sizeof(float));
00267         cuda_pull_array(state.truth, truth_cpu, num_truth);
00268     }
00269     cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
00270     network_state cpu_state = state;
00271     cpu_state.train = state.train;
00272     cpu_state.truth = truth_cpu;
00273     cpu_state.input = in_cpu;
00274     forward_detection_layer(l, cpu_state);
00275     cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
00276     cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
00277     free(cpu_state.input);
00278     if(cpu_state.truth) free(cpu_state.truth);
00279 }
00280 
00281 void backward_detection_layer_gpu(detection_layer l, network_state state)
00282 {
00283     axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
00284     //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
00285 }
00286 #endif
00287 


rail_object_detector
Author(s):
autogenerated on Sat Jun 8 2019 20:26:30