jquant1.c
Go to the documentation of this file.
00001 /*
00002  * jquant1.c
00003  *
00004  * Copyright (C) 1991-1996, Thomas G. Lane.
00005  * This file is part of the Independent JPEG Group's software.
00006  * For conditions of distribution and use, see the accompanying README file.
00007  *
00008  * This file contains 1-pass color quantization (color mapping) routines.
00009  * These routines provide mapping to a fixed color map using equally spaced
00010  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
00011  */
00012 
00013 #define JPEG_INTERNALS
00014 #include "jinclude.h"
00015 #include "jpeglib.h"
00016 
00017 #ifdef QUANT_1PASS_SUPPORTED
00018 
00019 
00020 /*
00021  * The main purpose of 1-pass quantization is to provide a fast, if not very
00022  * high quality, colormapped output capability.  A 2-pass quantizer usually
00023  * gives better visual quality; however, for quantized grayscale output this
00024  * quantizer is perfectly adequate.  Dithering is highly recommended with this
00025  * quantizer, though you can turn it off if you really want to.
00026  *
00027  * In 1-pass quantization the colormap must be chosen in advance of seeing the
00028  * image.  We use a map consisting of all combinations of Ncolors[i] color
00029  * values for the i'th component.  The Ncolors[] values are chosen so that
00030  * their product, the total number of colors, is no more than that requested.
00031  * (In most cases, the product will be somewhat less.)
00032  *
00033  * Since the colormap is orthogonal, the representative value for each color
00034  * component can be determined without considering the other components;
00035  * then these indexes can be combined into a colormap index by a standard
00036  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
00037  * can be precalculated and stored in the lookup table colorindex[].
00038  * colorindex[i][j] maps pixel value j in component i to the nearest
00039  * representative value (grid plane) for that component; this index is
00040  * multiplied by the array stride for component i, so that the
00041  * index of the colormap entry closest to a given pixel value is just
00042  *    sum( colorindex[component-number][pixel-component-value] )
00043  * Aside from being fast, this scheme allows for variable spacing between
00044  * representative values with no additional lookup cost.
00045  *
00046  * If gamma correction has been applied in color conversion, it might be wise
00047  * to adjust the color grid spacing so that the representative colors are
00048  * equidistant in linear space.  At this writing, gamma correction is not
00049  * implemented by jdcolor, so nothing is done here.
00050  */
00051 
00052 
00053 /* Declarations for ordered dithering.
00054  *
00055  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
00056  * dithering is described in many references, for instance Dale Schumacher's
00057  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
00058  * In place of Schumacher's comparisons against a "threshold" value, we add a
00059  * "dither" value to the input pixel and then round the result to the nearest
00060  * output value.  The dither value is equivalent to (0.5 - threshold) times
00061  * the distance between output values.  For ordered dithering, we assume that
00062  * the output colors are equally spaced; if not, results will probably be
00063  * worse, since the dither may be too much or too little at a given point.
00064  *
00065  * The normal calculation would be to form pixel value + dither, range-limit
00066  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
00067  * We can skip the separate range-limiting step by extending the colorindex
00068  * table in both directions.
00069  */
00070 
00071 #define ODITHER_SIZE  16        /* dimension of dither matrix */
00072 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
00073 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)       /* # cells in matrix */
00074 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
00075 
00076 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
00077 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
00078 
00079 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
00080   /* Bayer's order-4 dither array.  Generated by the code given in
00081    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
00082    * The values in this array must range from 0 to ODITHER_CELLS-1.
00083    */
00084   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
00085   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
00086   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
00087   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
00088   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
00089   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
00090   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
00091   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
00092   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
00093   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
00094   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
00095   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
00096   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
00097   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
00098   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
00099   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
00100 };
00101 
00102 
00103 /* Declarations for Floyd-Steinberg dithering.
00104  *
00105  * Errors are accumulated into the array fserrors[], at a resolution of
00106  * 1/16th of a pixel count.  The error at a given pixel is propagated
00107  * to its not-yet-processed neighbors using the standard F-S fractions,
00108  *              ...     (here)  7/16
00109  *              3/16    5/16    1/16
00110  * We work left-to-right on even rows, right-to-left on odd rows.
00111  *
00112  * We can get away with a single array (holding one row's worth of errors)
00113  * by using it to store the current row's errors at pixel columns not yet
00114  * processed, but the next row's errors at columns already processed.  We
00115  * need only a few extra variables to hold the errors immediately around the
00116  * current column.  (If we are lucky, those variables are in registers, but
00117  * even if not, they're probably cheaper to access than array elements are.)
00118  *
00119  * The fserrors[] array is indexed [component#][position].
00120  * We provide (#columns + 2) entries per component; the extra entry at each
00121  * end saves us from special-casing the first and last pixels.
00122  *
00123  * Note: on a wide image, we might not have enough room in a PC's near data
00124  * segment to hold the error array; so it is allocated with alloc_large.
00125  */
00126 
00127 #if BITS_IN_JSAMPLE == 8
00128 typedef INT16 FSERROR;          /* 16 bits should be enough */
00129 typedef int LOCFSERROR;         /* use 'int' for calculation temps */
00130 #else
00131 typedef INT32 FSERROR;          /* may need more than 16 bits */
00132 typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */
00133 #endif
00134 
00135 typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */
00136 
00137 
00138 /* Private subobject */
00139 
00140 #define MAX_Q_COMPS 4           /* max components I can handle */
00141 
00142 typedef struct {
00143   struct jpeg_color_quantizer pub; /* public fields */
00144 
00145   /* Initially allocated colormap is saved here */
00146   JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */
00147   int sv_actual;                /* number of entries in use */
00148 
00149   JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
00150   /* colorindex[i][j] = index of color closest to pixel value j in component i,
00151    * premultiplied as described above.  Since colormap indexes must fit into
00152    * JSAMPLEs, the entries of this array will too.
00153    */
00154   boolean is_padded;            /* is the colorindex padded for odither? */
00155 
00156   int Ncolors[MAX_Q_COMPS];     /* # of values alloced to each component */
00157 
00158   /* Variables for ordered dithering */
00159   int row_index;                /* cur row's vertical index in dither matrix */
00160   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
00161 
00162   /* Variables for Floyd-Steinberg dithering */
00163   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
00164   boolean on_odd_row;           /* flag to remember which row we are on */
00165 } my_cquantizer;
00166 
00167 typedef my_cquantizer * my_cquantize_ptr;
00168 
00169 
00170 /*
00171  * Policy-making subroutines for create_colormap and create_colorindex.
00172  * These routines determine the colormap to be used.  The rest of the module
00173  * only assumes that the colormap is orthogonal.
00174  *
00175  *  * select_ncolors decides how to divvy up the available colors
00176  *    among the components.
00177  *  * output_value defines the set of representative values for a component.
00178  *  * largest_input_value defines the mapping from input values to
00179  *    representative values for a component.
00180  * Note that the latter two routines may impose different policies for
00181  * different components, though this is not currently done.
00182  */
00183 
00184 
00185 LOCAL(int)
00186 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
00187 /* Determine allocation of desired colors to components, */
00188 /* and fill in Ncolors[] array to indicate choice. */
00189 /* Return value is total number of colors (product of Ncolors[] values). */
00190 {
00191   int nc = cinfo->out_color_components; /* number of color components */
00192   int max_colors = cinfo->desired_number_of_colors;
00193   int total_colors, iroot, i, j;
00194   boolean changed;
00195   long temp;
00196   static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
00197 
00198   /* We can allocate at least the nc'th root of max_colors per component. */
00199   /* Compute floor(nc'th root of max_colors). */
00200   iroot = 1;
00201   do {
00202     iroot++;
00203     temp = iroot;               /* set temp = iroot ** nc */
00204     for (i = 1; i < nc; i++)
00205       temp *= iroot;
00206   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
00207   iroot--;                      /* now iroot = floor(root) */
00208 
00209   /* Must have at least 2 color values per component */
00210   if (iroot < 2)
00211     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
00212 
00213   /* Initialize to iroot color values for each component */
00214   total_colors = 1;
00215   for (i = 0; i < nc; i++) {
00216     Ncolors[i] = iroot;
00217     total_colors *= iroot;
00218   }
00219   /* We may be able to increment the count for one or more components without
00220    * exceeding max_colors, though we know not all can be incremented.
00221    * Sometimes, the first component can be incremented more than once!
00222    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
00223    * In RGB colorspace, try to increment G first, then R, then B.
00224    */
00225   do {
00226     changed = FALSE;
00227     for (i = 0; i < nc; i++) {
00228       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
00229       /* calculate new total_colors if Ncolors[j] is incremented */
00230       temp = total_colors / Ncolors[j];
00231       temp *= Ncolors[j]+1;     /* done in long arith to avoid oflo */
00232       if (temp > (long) max_colors)
00233         break;                  /* won't fit, done with this pass */
00234       Ncolors[j]++;             /* OK, apply the increment */
00235       total_colors = (int) temp;
00236       changed = TRUE;
00237     }
00238   } while (changed);
00239 
00240   return total_colors;
00241 }
00242 
00243 
00244 LOCAL(int)
00245 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
00246 /* Return j'th output value, where j will range from 0 to maxj */
00247 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
00248 {
00249   /* We always provide values 0 and MAXJSAMPLE for each component;
00250    * any additional values are equally spaced between these limits.
00251    * (Forcing the upper and lower values to the limits ensures that
00252    * dithering can't produce a color outside the selected gamut.)
00253    */
00254   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
00255 }
00256 
00257 
00258 LOCAL(int)
00259 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
00260 /* Return largest input value that should map to j'th output value */
00261 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
00262 {
00263   /* Breakpoints are halfway between values returned by output_value */
00264   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
00265 }
00266 
00267 
00268 /*
00269  * Create the colormap.
00270  */
00271 
00272 LOCAL(void)
00273 create_colormap (j_decompress_ptr cinfo)
00274 {
00275   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
00276   JSAMPARRAY colormap;          /* Created colormap */
00277   int total_colors;             /* Number of distinct output colors */
00278   int i,j,k, nci, blksize, blkdist, ptr, val;
00279 
00280   /* Select number of colors for each component */
00281   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
00282 
00283   /* Report selected color counts */
00284   if (cinfo->out_color_components == 3)
00285     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
00286              total_colors, cquantize->Ncolors[0],
00287              cquantize->Ncolors[1], cquantize->Ncolors[2]);
00288   else
00289     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
00290 
00291   /* Allocate and fill in the colormap. */
00292   /* The colors are ordered in the map in standard row-major order, */
00293   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
00294 
00295   colormap = (*cinfo->mem->alloc_sarray)
00296     ((j_common_ptr) cinfo, JPOOL_IMAGE,
00297      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
00298 
00299   /* blksize is number of adjacent repeated entries for a component */
00300   /* blkdist is distance between groups of identical entries for a component */
00301   blkdist = total_colors;
00302 
00303   for (i = 0; i < cinfo->out_color_components; i++) {
00304     /* fill in colormap entries for i'th color component */
00305     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
00306     blksize = blkdist / nci;
00307     for (j = 0; j < nci; j++) {
00308       /* Compute j'th output value (out of nci) for component */
00309       val = output_value(cinfo, i, j, nci-1);
00310       /* Fill in all colormap entries that have this value of this component */
00311       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
00312         /* fill in blksize entries beginning at ptr */
00313         for (k = 0; k < blksize; k++)
00314           colormap[i][ptr+k] = (JSAMPLE) val;
00315       }
00316     }
00317     blkdist = blksize;          /* blksize of this color is blkdist of next */
00318   }
00319 
00320   /* Save the colormap in private storage,
00321    * where it will survive color quantization mode changes.
00322    */
00323   cquantize->sv_colormap = colormap;
00324   cquantize->sv_actual = total_colors;
00325 }
00326 
00327 
00328 /*
00329  * Create the color index table.
00330  */
00331 
00332 LOCAL(void)
00333 create_colorindex (j_decompress_ptr cinfo)
00334 {
00335   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
00336   JSAMPROW indexptr;
00337   int i,j,k, nci, blksize, val, pad;
00338 
00339   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
00340    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
00341    * This is not necessary in the other dithering modes.  However, we
00342    * flag whether it was done in case user changes dithering mode.
00343    */
00344   if (cinfo->dither_mode == JDITHER_ORDERED) {
00345     pad = MAXJSAMPLE*2;
00346     cquantize->is_padded = TRUE;
00347   } else {
00348     pad = 0;
00349     cquantize->is_padded = FALSE;
00350   }
00351 
00352   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
00353     ((j_common_ptr) cinfo, JPOOL_IMAGE,
00354      (JDIMENSION) (MAXJSAMPLE+1 + pad),
00355      (JDIMENSION) cinfo->out_color_components);
00356 
00357   /* blksize is number of adjacent repeated entries for a component */
00358   blksize = cquantize->sv_actual;
00359 
00360   for (i = 0; i < cinfo->out_color_components; i++) {
00361     /* fill in colorindex entries for i'th color component */
00362     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
00363     blksize = blksize / nci;
00364 
00365     /* adjust colorindex pointers to provide padding at negative indexes. */
00366     if (pad)
00367       cquantize->colorindex[i] += MAXJSAMPLE;
00368 
00369     /* in loop, val = index of current output value, */
00370     /* and k = largest j that maps to current val */
00371     indexptr = cquantize->colorindex[i];
00372     val = 0;
00373     k = largest_input_value(cinfo, i, 0, nci-1);
00374     for (j = 0; j <= MAXJSAMPLE; j++) {
00375       while (j > k)             /* advance val if past boundary */
00376         k = largest_input_value(cinfo, i, ++val, nci-1);
00377       /* premultiply so that no multiplication needed in main processing */
00378       indexptr[j] = (JSAMPLE) (val * blksize);
00379     }
00380     /* Pad at both ends if necessary */
00381     if (pad)
00382       for (j = 1; j <= MAXJSAMPLE; j++) {
00383         indexptr[-j] = indexptr[0];
00384         indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
00385       }
00386   }
00387 }
00388 
00389 
00390 /*
00391  * Create an ordered-dither array for a component having ncolors
00392  * distinct output values.
00393  */
00394 
00395 LOCAL(ODITHER_MATRIX_PTR)
00396 make_odither_array (j_decompress_ptr cinfo, int ncolors)
00397 {
00398   ODITHER_MATRIX_PTR odither;
00399   int j,k;
00400   INT32 num,den;
00401 
00402   odither = (ODITHER_MATRIX_PTR)
00403     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
00404                                 SIZEOF(ODITHER_MATRIX));
00405   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
00406    * Hence the dither value for the matrix cell with fill order f
00407    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
00408    * On 16-bit-int machine, be careful to avoid overflow.
00409    */
00410   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
00411   for (j = 0; j < ODITHER_SIZE; j++) {
00412     for (k = 0; k < ODITHER_SIZE; k++) {
00413       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
00414             * MAXJSAMPLE;
00415       /* Ensure round towards zero despite C's lack of consistency
00416        * about rounding negative values in integer division...
00417        */
00418       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
00419     }
00420   }
00421   return odither;
00422 }
00423 
00424 
00425 /*
00426  * Create the ordered-dither tables.
00427  * Components having the same number of representative colors may 
00428  * share a dither table.
00429  */
00430 
00431 LOCAL(void)
00432 create_odither_tables (j_decompress_ptr cinfo)
00433 {
00434   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
00435   ODITHER_MATRIX_PTR odither;
00436   int i, j, nci;
00437 
00438   for (i = 0; i < cinfo->out_color_components; i++) {
00439     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
00440     odither = NULL;             /* search for matching prior component */
00441     for (j = 0; j < i; j++) {
00442       if (nci == cquantize->Ncolors[j]) {
00443         odither = cquantize->odither[j];
00444         break;
00445       }
00446     }
00447     if (odither == NULL)        /* need a new table? */
00448       odither = make_odither_array(cinfo, nci);
00449     cquantize->odither[i] = odither;
00450   }
00451 }
00452 
00453 
00454 /*
00455  * Map some rows of pixels to the output colormapped representation.
00456  */
00457 
00458 METHODDEF(void)
00459 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
00460                 JSAMPARRAY output_buf, int num_rows)
00461 /* General case, no dithering */
00462 {
00463   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
00464   JSAMPARRAY colorindex = cquantize->colorindex;
00465   register int pixcode, ci;
00466   register JSAMPROW ptrin, ptrout;
00467   int row;
00468   JDIMENSION col;
00469   JDIMENSION width = cinfo->output_width;
00470   register int nc = cinfo->out_color_components;
00471 
00472   for (row = 0; row < num_rows; row++) {
00473     ptrin = input_buf[row];
00474     ptrout = output_buf[row];
00475     for (col = width; col > 0; col--) {
00476       pixcode = 0;
00477       for (ci = 0; ci < nc; ci++) {
00478         pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
00479       }
00480       *ptrout++ = (JSAMPLE) pixcode;
00481     }
00482   }
00483 }
00484 
00485 
00486 METHODDEF(void)
00487 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
00488                  JSAMPARRAY output_buf, int num_rows)
00489 /* Fast path for out_color_components==3, no dithering */
00490 {
00491   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
00492   register int pixcode;
00493   register JSAMPROW ptrin, ptrout;
00494   JSAMPROW colorindex0 = cquantize->colorindex[0];
00495   JSAMPROW colorindex1 = cquantize->colorindex[1];
00496   JSAMPROW colorindex2 = cquantize->colorindex[2];
00497   int row;
00498   JDIMENSION col;
00499   JDIMENSION width = cinfo->output_width;
00500 
00501   for (row = 0; row < num_rows; row++) {
00502     ptrin = input_buf[row];
00503     ptrout = output_buf[row];
00504     for (col = width; col > 0; col--) {
00505       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
00506       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
00507       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
00508       *ptrout++ = (JSAMPLE) pixcode;
00509     }
00510   }
00511 }
00512 
00513 
00514 METHODDEF(void)
00515 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
00516                      JSAMPARRAY output_buf, int num_rows)
00517 /* General case, with ordered dithering */
00518 {
00519   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
00520   register JSAMPROW input_ptr;
00521   register JSAMPROW output_ptr;
00522   JSAMPROW colorindex_ci;
00523   int * dither;                 /* points to active row of dither matrix */
00524   int row_index, col_index;     /* current indexes into dither matrix */
00525   int nc = cinfo->out_color_components;
00526   int ci;
00527   int row;
00528   JDIMENSION col;
00529   JDIMENSION width = cinfo->output_width;
00530 
00531   for (row = 0; row < num_rows; row++) {
00532     /* Initialize output values to 0 so can process components separately */
00533     jzero_far((void FAR *) output_buf[row],
00534               (size_t) (width * SIZEOF(JSAMPLE)));
00535     row_index = cquantize->row_index;
00536     for (ci = 0; ci < nc; ci++) {
00537       input_ptr = input_buf[row] + ci;
00538       output_ptr = output_buf[row];
00539       colorindex_ci = cquantize->colorindex[ci];
00540       dither = cquantize->odither[ci][row_index];
00541       col_index = 0;
00542 
00543       for (col = width; col > 0; col--) {
00544         /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
00545          * select output value, accumulate into output code for this pixel.
00546          * Range-limiting need not be done explicitly, as we have extended
00547          * the colorindex table to produce the right answers for out-of-range
00548          * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
00549          * required amount of padding.
00550          */
00551         *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
00552         input_ptr += nc;
00553         output_ptr++;
00554         col_index = (col_index + 1) & ODITHER_MASK;
00555       }
00556     }
00557     /* Advance row index for next row */
00558     row_index = (row_index + 1) & ODITHER_MASK;
00559     cquantize->row_index = row_index;
00560   }
00561 }
00562 
00563 
00564 METHODDEF(void)
00565 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
00566                       JSAMPARRAY output_buf, int num_rows)
00567 /* Fast path for out_color_components==3, with ordered dithering */
00568 {
00569   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
00570   register int pixcode;
00571   register JSAMPROW input_ptr;
00572   register JSAMPROW output_ptr;
00573   JSAMPROW colorindex0 = cquantize->colorindex[0];
00574   JSAMPROW colorindex1 = cquantize->colorindex[1];
00575   JSAMPROW colorindex2 = cquantize->colorindex[2];
00576   int * dither0;                /* points to active row of dither matrix */
00577   int * dither1;
00578   int * dither2;
00579   int row_index, col_index;     /* current indexes into dither matrix */
00580   int row;
00581   JDIMENSION col;
00582   JDIMENSION width = cinfo->output_width;
00583 
00584   for (row = 0; row < num_rows; row++) {
00585     row_index = cquantize->row_index;
00586     input_ptr = input_buf[row];
00587     output_ptr = output_buf[row];
00588     dither0 = cquantize->odither[0][row_index];
00589     dither1 = cquantize->odither[1][row_index];
00590     dither2 = cquantize->odither[2][row_index];
00591     col_index = 0;
00592 
00593     for (col = width; col > 0; col--) {
00594       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
00595                                         dither0[col_index]]);
00596       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
00597                                         dither1[col_index]]);
00598       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
00599                                         dither2[col_index]]);
00600       *output_ptr++ = (JSAMPLE) pixcode;
00601       col_index = (col_index + 1) & ODITHER_MASK;
00602     }
00603     row_index = (row_index + 1) & ODITHER_MASK;
00604     cquantize->row_index = row_index;
00605   }
00606 }
00607 
00608 
00609 METHODDEF(void)
00610 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
00611                     JSAMPARRAY output_buf, int num_rows)
00612 /* General case, with Floyd-Steinberg dithering */
00613 {
00614   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
00615   register LOCFSERROR cur;      /* current error or pixel value */
00616   LOCFSERROR belowerr;          /* error for pixel below cur */
00617   LOCFSERROR bpreverr;          /* error for below/prev col */
00618   LOCFSERROR bnexterr;          /* error for below/next col */
00619   LOCFSERROR delta;
00620   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
00621   register JSAMPROW input_ptr;
00622   register JSAMPROW output_ptr;
00623   JSAMPROW colorindex_ci;
00624   JSAMPROW colormap_ci;
00625   int pixcode;
00626   int nc = cinfo->out_color_components;
00627   int dir;                      /* 1 for left-to-right, -1 for right-to-left */
00628   int dirnc;                    /* dir * nc */
00629   int ci;
00630   int row;
00631   JDIMENSION col;
00632   JDIMENSION width = cinfo->output_width;
00633   JSAMPLE *range_limit = cinfo->sample_range_limit;
00634   SHIFT_TEMPS
00635 
00636   for (row = 0; row < num_rows; row++) {
00637     /* Initialize output values to 0 so can process components separately */
00638     jzero_far((void FAR *) output_buf[row],
00639               (size_t) (width * SIZEOF(JSAMPLE)));
00640     for (ci = 0; ci < nc; ci++) {
00641       input_ptr = input_buf[row] + ci;
00642       output_ptr = output_buf[row];
00643       if (cquantize->on_odd_row) {
00644         /* work right to left in this row */
00645         input_ptr += (width-1) * nc; /* so point to rightmost pixel */
00646         output_ptr += width-1;
00647         dir = -1;
00648         dirnc = -nc;
00649         errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
00650       } else {
00651         /* work left to right in this row */
00652         dir = 1;
00653         dirnc = nc;
00654         errorptr = cquantize->fserrors[ci]; /* => entry before first column */
00655       }
00656       colorindex_ci = cquantize->colorindex[ci];
00657       colormap_ci = cquantize->sv_colormap[ci];
00658       /* Preset error values: no error propagated to first pixel from left */
00659       cur = 0;
00660       /* and no error propagated to row below yet */
00661       belowerr = bpreverr = 0;
00662 
00663       for (col = width; col > 0; col--) {
00664         /* cur holds the error propagated from the previous pixel on the
00665          * current line.  Add the error propagated from the previous line
00666          * to form the complete error correction term for this pixel, and
00667          * round the error term (which is expressed * 16) to an integer.
00668          * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
00669          * for either sign of the error value.
00670          * Note: errorptr points to *previous* column's array entry.
00671          */
00672         cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
00673         /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
00674          * The maximum error is +- MAXJSAMPLE; this sets the required size
00675          * of the range_limit array.
00676          */
00677         cur += GETJSAMPLE(*input_ptr);
00678         cur = GETJSAMPLE(range_limit[cur]);
00679         /* Select output value, accumulate into output code for this pixel */
00680         pixcode = GETJSAMPLE(colorindex_ci[cur]);
00681         *output_ptr += (JSAMPLE) pixcode;
00682         /* Compute actual representation error at this pixel */
00683         /* Note: we can do this even though we don't have the final */
00684         /* pixel code, because the colormap is orthogonal. */
00685         cur -= GETJSAMPLE(colormap_ci[pixcode]);
00686         /* Compute error fractions to be propagated to adjacent pixels.
00687          * Add these into the running sums, and simultaneously shift the
00688          * next-line error sums left by 1 column.
00689          */
00690         bnexterr = cur;
00691         delta = cur * 2;
00692         cur += delta;           /* form error * 3 */
00693         errorptr[0] = (FSERROR) (bpreverr + cur);
00694         cur += delta;           /* form error * 5 */
00695         bpreverr = belowerr + cur;
00696         belowerr = bnexterr;
00697         cur += delta;           /* form error * 7 */
00698         /* At this point cur contains the 7/16 error value to be propagated
00699          * to the next pixel on the current line, and all the errors for the
00700          * next line have been shifted over. We are therefore ready to move on.
00701          */
00702         input_ptr += dirnc;     /* advance input ptr to next column */
00703         output_ptr += dir;      /* advance output ptr to next column */
00704         errorptr += dir;        /* advance errorptr to current column */
00705       }
00706       /* Post-loop cleanup: we must unload the final error value into the
00707        * final fserrors[] entry.  Note we need not unload belowerr because
00708        * it is for the dummy column before or after the actual array.
00709        */
00710       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
00711     }
00712     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
00713   }
00714 }
00715 
00716 
00717 /*
00718  * Allocate workspace for Floyd-Steinberg errors.
00719  */
00720 
00721 LOCAL(void)
00722 alloc_fs_workspace (j_decompress_ptr cinfo)
00723 {
00724   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
00725   size_t arraysize;
00726   int i;
00727 
00728   arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
00729   for (i = 0; i < cinfo->out_color_components; i++) {
00730     cquantize->fserrors[i] = (FSERRPTR)
00731       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
00732   }
00733 }
00734 
00735 
00736 /*
00737  * Initialize for one-pass color quantization.
00738  */
00739 
00740 METHODDEF(void)
00741 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
00742 {
00743   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
00744   size_t arraysize;
00745   int i;
00746 
00747   /* Install my colormap. */
00748   cinfo->colormap = cquantize->sv_colormap;
00749   cinfo->actual_number_of_colors = cquantize->sv_actual;
00750 
00751   /* Initialize for desired dithering mode. */
00752   switch (cinfo->dither_mode) {
00753   case JDITHER_NONE:
00754     if (cinfo->out_color_components == 3)
00755       cquantize->pub.color_quantize = color_quantize3;
00756     else
00757       cquantize->pub.color_quantize = color_quantize;
00758     break;
00759   case JDITHER_ORDERED:
00760     if (cinfo->out_color_components == 3)
00761       cquantize->pub.color_quantize = quantize3_ord_dither;
00762     else
00763       cquantize->pub.color_quantize = quantize_ord_dither;
00764     cquantize->row_index = 0;   /* initialize state for ordered dither */
00765     /* If user changed to ordered dither from another mode,
00766      * we must recreate the color index table with padding.
00767      * This will cost extra space, but probably isn't very likely.
00768      */
00769     if (! cquantize->is_padded)
00770       create_colorindex(cinfo);
00771     /* Create ordered-dither tables if we didn't already. */
00772     if (cquantize->odither[0] == NULL)
00773       create_odither_tables(cinfo);
00774     break;
00775   case JDITHER_FS:
00776     cquantize->pub.color_quantize = quantize_fs_dither;
00777     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
00778     /* Allocate Floyd-Steinberg workspace if didn't already. */
00779     if (cquantize->fserrors[0] == NULL)
00780       alloc_fs_workspace(cinfo);
00781     /* Initialize the propagated errors to zero. */
00782     arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
00783     for (i = 0; i < cinfo->out_color_components; i++)
00784       jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
00785     break;
00786   default:
00787     ERREXIT(cinfo, JERR_NOT_COMPILED);
00788     break;
00789   }
00790 }
00791 
00792 
00793 /*
00794  * Finish up at the end of the pass.
00795  */
00796 
00797 METHODDEF(void)
00798 finish_pass_1_quant (j_decompress_ptr cinfo)
00799 {
00800   /* no work in 1-pass case */
00801 }
00802 
00803 
00804 /*
00805  * Switch to a new external colormap between output passes.
00806  * Shouldn't get to this module!
00807  */
00808 
00809 METHODDEF(void)
00810 new_color_map_1_quant (j_decompress_ptr cinfo)
00811 {
00812   ERREXIT(cinfo, JERR_MODE_CHANGE);
00813 }
00814 
00815 
00816 /*
00817  * Module initialization routine for 1-pass color quantization.
00818  */
00819 
00820 GLOBAL(void)
00821 jinit_1pass_quantizer (j_decompress_ptr cinfo)
00822 {
00823   my_cquantize_ptr cquantize;
00824 
00825   cquantize = (my_cquantize_ptr)
00826     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
00827                                 SIZEOF(my_cquantizer));
00828   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
00829   cquantize->pub.start_pass = start_pass_1_quant;
00830   cquantize->pub.finish_pass = finish_pass_1_quant;
00831   cquantize->pub.new_color_map = new_color_map_1_quant;
00832   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
00833   cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
00834 
00835   /* Make sure my internal arrays won't overflow */
00836   if (cinfo->out_color_components > MAX_Q_COMPS)
00837     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
00838   /* Make sure colormap indexes can be represented by JSAMPLEs */
00839   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
00840     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
00841 
00842   /* Create the colormap and color index table. */
00843   create_colormap(cinfo);
00844   create_colorindex(cinfo);
00845 
00846   /* Allocate Floyd-Steinberg workspace now if requested.
00847    * We do this now since it is FAR storage and may affect the memory
00848    * manager's space calculations.  If the user changes to FS dither
00849    * mode in a later pass, we will allocate the space then, and will
00850    * possibly overrun the max_memory_to_use setting.
00851    */
00852   if (cinfo->dither_mode == JDITHER_FS)
00853     alloc_fs_workspace(cinfo);
00854 }
00855 
00856 #endif /* QUANT_1PASS_SUPPORTED */


openhrp3
Author(s): AIST, General Robotix Inc., Nakamura Lab of Dept. of Mechano Informatics at University of Tokyo
autogenerated on Thu Apr 11 2019 03:30:17