convex_hull_mask_image.cpp
Go to the documentation of this file.
00001 // -*- mode: c++ -*-
00002 /*********************************************************************
00003  * Software License Agreement (BSD License)
00004  *
00005  *  Copyright (c) 2016, JSK Lab
00006  *  All rights reserved.
00007  *
00008  *  Redistribution and use in source and binary forms, with or without
00009  *  modification, are permitted provided that the following conditions
00010  *  are met:
00011  *
00012  *   * Redistributions of source code must retain the above copyright
00013  *     notice, this list of conditions and the following disclaimer.
00014  *   * Redistributions in binary form must reproduce the above
00015  *     copyright notice, this list of conditions and the following
00016  *     disclaimer in the documentation and/o2r other materials provided
00017  *     with the distribution.
00018  *   * Neither the name of the JSK Lab nor the names of its
00019  *     contributors may be used to endorse or promote products derived
00020  *     from this software without specific prior written permission.
00021  *
00022  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00023  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00024  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00025  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00026  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00027  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00028  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00029  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00030  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00032  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00033  *  POSSIBILITY OF SUCH DAMAGE.
00034  *********************************************************************/
00035 
00036 #include "jsk_perception/convex_hull_mask_image.h"
00037 #include <boost/assign.hpp>
00038 #include <boost/tuple/tuple.hpp>
00039 #include <jsk_topic_tools/log_utils.h>
00040 #include <jsk_recognition_utils/cv_utils.h>
00041 #include <opencv2/opencv.hpp>
00042 #include <sensor_msgs/image_encodings.h>
00043 #include <cv_bridge/cv_bridge.h>
00044 
00045 namespace jsk_perception
00046 {
00047   void ConvexHullMaskImage::onInit()
00048   {
00049     DiagnosticNodelet::onInit();
00050     pub_ = advertise<sensor_msgs::Image>(*pnh_, "output", 1);
00051     onInitPostProcess();
00052   }
00053 
00054   void ConvexHullMaskImage::subscribe()
00055   {
00056     sub_ = pnh_->subscribe("input", 1, &ConvexHullMaskImage::rectify, this);
00057     ros::V_string names = boost::assign::list_of("~input");
00058     jsk_topic_tools::warnNoRemap(names);
00059   }
00060 
00061   void ConvexHullMaskImage::unsubscribe()
00062   {
00063     sub_.shutdown();
00064   }
00065 
00066   void ConvexHullMaskImage::rectify(
00067     const sensor_msgs::Image::ConstPtr& mask_msg)
00068   {
00069     vital_checker_->poke();
00070     cv_bridge::CvImagePtr cv_ptr = cv_bridge::toCvCopy(
00071       mask_msg, sensor_msgs::image_encodings::MONO8);
00072     cv::Mat mask = cv_ptr->image;
00073 
00074     std::vector<std::vector<cv::Point> > contours;
00075     cv::findContours(mask, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
00076 
00077     boost::tuple<int, double> max_area;
00078     std::vector<std::vector<cv::Point> >hull(contours.size());
00079     // Find the convex hull object for each contour
00080     for (size_t i = 0; i < contours.size(); i++) {
00081       // Find max area to create mask later
00082       double area = cv::contourArea(contours[i]);
00083       if (area > max_area.get<1>()) {
00084         max_area = boost::make_tuple<int, double>(i, area);
00085       }
00086       cv::convexHull(cv::Mat(contours[i]), hull[i], false);
00087     }
00088 
00089     cv::Mat convex_hull_mask = cv::Mat::zeros(mask_msg->height, mask_msg->width, CV_8UC1);
00090     cv::drawContours(convex_hull_mask, hull, max_area.get<0>(), cv::Scalar(255), CV_FILLED);
00091 
00092     pub_.publish(cv_bridge::CvImage(
00093                     mask_msg->header,
00094                     sensor_msgs::image_encodings::MONO8,
00095                     convex_hull_mask).toImageMsg());
00096   }
00097 
00098 }  // namespace jsk_perception
00099 
00100 #include <pluginlib/class_list_macros.h>
00101 PLUGINLIB_EXPORT_CLASS(jsk_perception::ConvexHullMaskImage, nodelet::Nodelet);


jsk_perception
Author(s): Manabu Saito, Ryohei Ueda
autogenerated on Tue Jul 2 2019 19:41:07