00001 #include <stdio.h>
00002 #include <stdlib.h>
00003 #include <string.h>
00004 #include <ctype.h>
00005 #include "../svm.h"
00006
00007 #include "mex.h"
00008 #include "svm_model_matlab.h"
00009
00010 #ifdef MX_API_VER
00011 #if MX_API_VER < 0x07030000
00012 typedef int mwIndex;
00013 #endif
00014 #endif
00015
00016 #define CMD_LEN 2048
00017 #define Malloc(type,n) (type *)malloc((n)*sizeof(type))
00018
00019 void print_null(const char *s) {}
00020 void print_string_matlab(const char *s) {mexPrintf(s);}
00021
00022 void exit_with_help()
00023 {
00024 mexPrintf(
00025 "Usage: model = svmtrain(training_label_vector, training_instance_matrix, 'libsvm_options');\n"
00026 "libsvm_options:\n"
00027 "-s svm_type : set type of SVM (default 0)\n"
00028 " 0 -- C-SVC\n"
00029 " 1 -- nu-SVC\n"
00030 " 2 -- one-class SVM\n"
00031 " 3 -- epsilon-SVR\n"
00032 " 4 -- nu-SVR\n"
00033 "-t kernel_type : set type of kernel function (default 2)\n"
00034 " 0 -- linear: u'*v\n"
00035 " 1 -- polynomial: (gamma*u'*v + coef0)^degree\n"
00036 " 2 -- radial basis function: exp(-gamma*|u-v|^2)\n"
00037 " 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"
00038 " 4 -- precomputed kernel (kernel values in training_instance_matrix)\n"
00039 "-d degree : set degree in kernel function (default 3)\n"
00040 "-g gamma : set gamma in kernel function (default 1/num_features)\n"
00041 "-r coef0 : set coef0 in kernel function (default 0)\n"
00042 "-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n"
00043 "-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n"
00044 "-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n"
00045 "-m cachesize : set cache memory size in MB (default 100)\n"
00046 "-e epsilon : set tolerance of termination criterion (default 0.001)\n"
00047 "-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)\n"
00048 "-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n"
00049 "-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)\n"
00050 "-v n : n-fold cross validation mode\n"
00051 "-q : quiet mode (no outputs)\n"
00052 );
00053 }
00054
00055
00056 struct svm_parameter param;
00057 struct svm_problem prob;
00058 struct svm_model *model;
00059 struct svm_node *x_space;
00060 int cross_validation;
00061 int nr_fold;
00062
00063
00064 double do_cross_validation()
00065 {
00066 int i;
00067 int total_correct = 0;
00068 double total_error = 0;
00069 double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
00070 double *target = Malloc(double,prob.l);
00071 double retval = 0.0;
00072
00073 svm_cross_validation(&prob,¶m,nr_fold,target);
00074 if(param.svm_type == EPSILON_SVR ||
00075 param.svm_type == NU_SVR)
00076 {
00077 for(i=0;i<prob.l;i++)
00078 {
00079 double y = prob.y[i];
00080 double v = target[i];
00081 total_error += (v-y)*(v-y);
00082 sumv += v;
00083 sumy += y;
00084 sumvv += v*v;
00085 sumyy += y*y;
00086 sumvy += v*y;
00087 }
00088 mexPrintf("Cross Validation Mean squared error = %g\n",total_error/prob.l);
00089 mexPrintf("Cross Validation Squared correlation coefficient = %g\n",
00090 ((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/
00091 ((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))
00092 );
00093 retval = total_error/prob.l;
00094 }
00095 else
00096 {
00097 for(i=0;i<prob.l;i++)
00098 if(target[i] == prob.y[i])
00099 ++total_correct;
00100 mexPrintf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);
00101 retval = 100.0*total_correct/prob.l;
00102 }
00103 free(target);
00104 return retval;
00105 }
00106
00107
00108 int parse_command_line(int nrhs, const mxArray *prhs[], char *model_file_name)
00109 {
00110 int i, argc = 1;
00111 char cmd[CMD_LEN];
00112 char *argv[CMD_LEN/2];
00113 void (*print_func)(const char *) = print_string_matlab;
00114
00115
00116 param.svm_type = C_SVC;
00117 param.kernel_type = RBF;
00118 param.degree = 3;
00119 param.gamma = 0;
00120 param.coef0 = 0;
00121 param.nu = 0.5;
00122 param.cache_size = 100;
00123 param.C = 1;
00124 param.eps = 1e-3;
00125 param.p = 0.1;
00126 param.shrinking = 1;
00127 param.probability = 0;
00128 param.nr_weight = 0;
00129 param.weight_label = NULL;
00130 param.weight = NULL;
00131 cross_validation = 0;
00132
00133 if(nrhs <= 1)
00134 return 1;
00135
00136 if(nrhs > 2)
00137 {
00138
00139 mxGetString(prhs[2], cmd, mxGetN(prhs[2]) + 1);
00140 if((argv[argc] = strtok(cmd, " ")) != NULL)
00141 while((argv[++argc] = strtok(NULL, " ")) != NULL)
00142 ;
00143 }
00144
00145
00146 for(i=1;i<argc;i++)
00147 {
00148 if(argv[i][0] != '-') break;
00149 ++i;
00150 if(i>=argc && argv[i-1][1] != 'q')
00151 return 1;
00152 switch(argv[i-1][1])
00153 {
00154 case 's':
00155 param.svm_type = atoi(argv[i]);
00156 break;
00157 case 't':
00158 param.kernel_type = atoi(argv[i]);
00159 break;
00160 case 'd':
00161 param.degree = atoi(argv[i]);
00162 break;
00163 case 'g':
00164 param.gamma = atof(argv[i]);
00165 break;
00166 case 'r':
00167 param.coef0 = atof(argv[i]);
00168 break;
00169 case 'n':
00170 param.nu = atof(argv[i]);
00171 break;
00172 case 'm':
00173 param.cache_size = atof(argv[i]);
00174 break;
00175 case 'c':
00176 param.C = atof(argv[i]);
00177 break;
00178 case 'e':
00179 param.eps = atof(argv[i]);
00180 break;
00181 case 'p':
00182 param.p = atof(argv[i]);
00183 break;
00184 case 'h':
00185 param.shrinking = atoi(argv[i]);
00186 break;
00187 case 'b':
00188 param.probability = atoi(argv[i]);
00189 break;
00190 case 'q':
00191 print_func = &print_null;
00192 i--;
00193 break;
00194 case 'v':
00195 cross_validation = 1;
00196 nr_fold = atoi(argv[i]);
00197 if(nr_fold < 2)
00198 {
00199 mexPrintf("n-fold cross validation: n must >= 2\n");
00200 return 1;
00201 }
00202 break;
00203 case 'w':
00204 ++param.nr_weight;
00205 param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight);
00206 param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight);
00207 param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);
00208 param.weight[param.nr_weight-1] = atof(argv[i]);
00209 break;
00210 default:
00211 mexPrintf("Unknown option -%c\n", argv[i-1][1]);
00212 return 1;
00213 }
00214 }
00215
00216 svm_set_print_string_function(print_func);
00217
00218 return 0;
00219 }
00220
00221
00222 int read_problem_dense(const mxArray *label_vec, const mxArray *instance_mat)
00223 {
00224 int i, j, k;
00225 int elements, max_index, sc, label_vector_row_num;
00226 double *samples, *labels;
00227
00228 prob.x = NULL;
00229 prob.y = NULL;
00230 x_space = NULL;
00231
00232 labels = mxGetPr(label_vec);
00233 samples = mxGetPr(instance_mat);
00234 sc = (int)mxGetN(instance_mat);
00235
00236 elements = 0;
00237
00238 prob.l = (int)mxGetM(instance_mat);
00239 label_vector_row_num = (int)mxGetM(label_vec);
00240
00241 if(label_vector_row_num!=prob.l)
00242 {
00243 mexPrintf("Length of label vector does not match # of instances.\n");
00244 return -1;
00245 }
00246
00247 if(param.kernel_type == PRECOMPUTED)
00248 elements = prob.l * (sc + 1);
00249 else
00250 {
00251 for(i = 0; i < prob.l; i++)
00252 {
00253 for(k = 0; k < sc; k++)
00254 if(samples[k * prob.l + i] != 0)
00255 elements++;
00256
00257 elements++;
00258 }
00259 }
00260
00261 prob.y = Malloc(double,prob.l);
00262 prob.x = Malloc(struct svm_node *,prob.l);
00263 x_space = Malloc(struct svm_node, elements);
00264
00265 max_index = sc;
00266 j = 0;
00267 for(i = 0; i < prob.l; i++)
00268 {
00269 prob.x[i] = &x_space[j];
00270 prob.y[i] = labels[i];
00271
00272 for(k = 0; k < sc; k++)
00273 {
00274 if(param.kernel_type == PRECOMPUTED || samples[k * prob.l + i] != 0)
00275 {
00276 x_space[j].index = k + 1;
00277 x_space[j].value = samples[k * prob.l + i];
00278 j++;
00279 }
00280 }
00281 x_space[j++].index = -1;
00282 }
00283
00284 if(param.gamma == 0 && max_index > 0)
00285 param.gamma = 1.0/max_index;
00286
00287 if(param.kernel_type == PRECOMPUTED)
00288 for(i=0;i<prob.l;i++)
00289 {
00290 if((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index)
00291 {
00292 mexPrintf("Wrong input format: sample_serial_number out of range\n");
00293 return -1;
00294 }
00295 }
00296
00297 return 0;
00298 }
00299
00300 int read_problem_sparse(const mxArray *label_vec, const mxArray *instance_mat)
00301 {
00302 int i, j, k, low, high;
00303 mwIndex *ir, *jc;
00304 int elements, max_index, num_samples, label_vector_row_num;
00305 double *samples, *labels;
00306 mxArray *instance_mat_col;
00307
00308 prob.x = NULL;
00309 prob.y = NULL;
00310 x_space = NULL;
00311
00312
00313 {
00314 mxArray *prhs[1], *plhs[1];
00315 prhs[0] = mxDuplicateArray(instance_mat);
00316 if(mexCallMATLAB(1, plhs, 1, prhs, "transpose"))
00317 {
00318 mexPrintf("Error: cannot transpose training instance matrix\n");
00319 return -1;
00320 }
00321 instance_mat_col = plhs[0];
00322 mxDestroyArray(prhs[0]);
00323 }
00324
00325
00326 labels = mxGetPr(label_vec);
00327 samples = mxGetPr(instance_mat_col);
00328 ir = mxGetIr(instance_mat_col);
00329 jc = mxGetJc(instance_mat_col);
00330
00331 num_samples = (int)mxGetNzmax(instance_mat_col);
00332
00333
00334 prob.l = (int)mxGetN(instance_mat_col);
00335 label_vector_row_num = (int)mxGetM(label_vec);
00336
00337 if(label_vector_row_num!=prob.l)
00338 {
00339 mexPrintf("Length of label vector does not match # of instances.\n");
00340 return -1;
00341 }
00342
00343 elements = num_samples + prob.l;
00344 max_index = (int)mxGetM(instance_mat_col);
00345
00346 prob.y = Malloc(double,prob.l);
00347 prob.x = Malloc(struct svm_node *,prob.l);
00348 x_space = Malloc(struct svm_node, elements);
00349
00350 j = 0;
00351 for(i=0;i<prob.l;i++)
00352 {
00353 prob.x[i] = &x_space[j];
00354 prob.y[i] = labels[i];
00355 low = (int)jc[i], high = (int)jc[i+1];
00356 for(k=low;k<high;k++)
00357 {
00358 x_space[j].index = (int)ir[k] + 1;
00359 x_space[j].value = samples[k];
00360 j++;
00361 }
00362 x_space[j++].index = -1;
00363 }
00364
00365 if(param.gamma == 0 && max_index > 0)
00366 param.gamma = 1.0/max_index;
00367
00368 return 0;
00369 }
00370
00371 static void fake_answer(mxArray *plhs[])
00372 {
00373 plhs[0] = mxCreateDoubleMatrix(0, 0, mxREAL);
00374 }
00375
00376
00377
00378 void mexFunction( int nlhs, mxArray *plhs[],
00379 int nrhs, const mxArray *prhs[] )
00380 {
00381 const char *error_msg;
00382
00383
00384
00385 srand(1);
00386
00387
00388 if(nrhs > 1 && nrhs < 4)
00389 {
00390 int err;
00391
00392 if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1])) {
00393 mexPrintf("Error: label vector and instance matrix must be double\n");
00394 fake_answer(plhs);
00395 return;
00396 }
00397
00398 if(parse_command_line(nrhs, prhs, NULL))
00399 {
00400 exit_with_help();
00401 svm_destroy_param(¶m);
00402 fake_answer(plhs);
00403 return;
00404 }
00405
00406 if(mxIsSparse(prhs[1]))
00407 {
00408 if(param.kernel_type == PRECOMPUTED)
00409 {
00410
00411 mxArray *rhs[1], *lhs[1];
00412
00413 rhs[0] = mxDuplicateArray(prhs[1]);
00414 if(mexCallMATLAB(1, lhs, 1, rhs, "full"))
00415 {
00416 mexPrintf("Error: cannot generate a full training instance matrix\n");
00417 svm_destroy_param(¶m);
00418 fake_answer(plhs);
00419 return;
00420 }
00421 err = read_problem_dense(prhs[0], lhs[0]);
00422 mxDestroyArray(lhs[0]);
00423 mxDestroyArray(rhs[0]);
00424 }
00425 else
00426 err = read_problem_sparse(prhs[0], prhs[1]);
00427 }
00428 else
00429 err = read_problem_dense(prhs[0], prhs[1]);
00430
00431
00432 error_msg = svm_check_parameter(&prob, ¶m);
00433
00434 if(err || error_msg)
00435 {
00436 if (error_msg != NULL)
00437 mexPrintf("Error: %s\n", error_msg);
00438 svm_destroy_param(¶m);
00439 free(prob.y);
00440 free(prob.x);
00441 free(x_space);
00442 fake_answer(plhs);
00443 return;
00444 }
00445
00446 if(cross_validation)
00447 {
00448 double *ptr;
00449 plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);
00450 ptr = mxGetPr(plhs[0]);
00451 ptr[0] = do_cross_validation();
00452 }
00453 else
00454 {
00455 int nr_feat = (int)mxGetN(prhs[1]);
00456 const char *error_msg;
00457 model = svm_train(&prob, ¶m);
00458 error_msg = model_to_matlab_structure(plhs, nr_feat, model);
00459 if(error_msg)
00460 mexPrintf("Error: can't convert libsvm model to matrix structure: %s\n", error_msg);
00461 svm_free_and_destroy_model(&model);
00462 }
00463 svm_destroy_param(¶m);
00464 free(prob.y);
00465 free(prob.x);
00466 free(x_space);
00467 }
00468 else
00469 {
00470 exit_with_help();
00471 fake_answer(plhs);
00472 return;
00473 }
00474 }