KdTree.h
Go to the documentation of this file.
00001 // ****************************************************************************
00002 // This file is part of the Integrating Vision Toolkit (IVT).
00003 //
00004 // The IVT is maintained by the Karlsruhe Institute of Technology (KIT)
00005 // (www.kit.edu) in cooperation with the company Keyetech (www.keyetech.de).
00006 //
00007 // Copyright (C) 2014 Karlsruhe Institute of Technology (KIT).
00008 // All rights reserved.
00009 //
00010 // Redistribution and use in source and binary forms, with or without
00011 // modification, are permitted provided that the following conditions are met:
00012 //
00013 // 1. Redistributions of source code must retain the above copyright
00014 //    notice, this list of conditions and the following disclaimer.
00015 //
00016 // 2. Redistributions in binary form must reproduce the above copyright
00017 //    notice, this list of conditions and the following disclaimer in the
00018 //    documentation and/or other materials provided with the distribution.
00019 //
00020 // 3. Neither the name of the KIT nor the names of its contributors may be
00021 //    used to endorse or promote products derived from this software
00022 //    without specific prior written permission.
00023 //
00024 // THIS SOFTWARE IS PROVIDED BY THE KIT AND CONTRIBUTORS “AS IS” AND ANY
00025 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
00026 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
00027 // DISCLAIMED. IN NO EVENT SHALL THE KIT OR CONTRIBUTORS BE LIABLE FOR ANY
00028 // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
00029 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00030 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
00031 // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
00032 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
00033 // THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00034 // ****************************************************************************
00035 // ****************************************************************************
00036 // Filename:  KdTree.h
00037 // Author:    Kai Welke
00038 // Date:      14.04.2005
00039 // ****************************************************************************
00040 
00041 
00042 #ifndef _KD_TREE_H_
00043 #define _KD_TREE_H_
00044 
00045 
00046 // ****************************************************************************
00047 // Necessary includes
00048 // ****************************************************************************
00049 
00050 #include "KdStructs.h"
00051 
00052 
00053 // ****************************************************************************
00054 // Forward declarations
00055 // ****************************************************************************
00056 
00057 class CKdPriorityQueue;
00058 
00059 
00060 // ****************************************************************************
00061 // CKdTreeNode
00062 // ****************************************************************************
00063 
00064 class CKdTreeNode
00065 {
00066 public:
00067         CKdTreeNode()
00068         {
00069                 m_pLeftChild = 0; 
00070                 m_pRightChild = 0; 
00071                 m_nCutDimension = 0;
00072                 m_bIsLeaf = 0;
00073                 m_Bounding.fLow = 0;
00074                 m_Bounding.fHigh = 0;
00075                 m_nSize = 0;
00076                 m_pValues = 0;
00077         }
00078         
00079         ~CKdTreeNode()
00080         {
00081                 if (m_pValues)
00082                         delete [] m_pValues;
00083         }
00084         
00085 
00086         // public methods
00087         CKdTreeNode *m_pLeftChild, *m_pRightChild;
00088     
00089         float m_fMedianValue;
00090         
00091         KdBounding m_Bounding;
00092         
00093         int m_bIsLeaf;
00094         int m_nCutDimension;
00095                 
00096         int m_nSize;
00097         float *m_pValues;
00098 };
00099 
00100 
00101 
00102 // ****************************************************************************
00103 // CKdTree
00104 // ****************************************************************************
00105 
00106 class CKdTree
00107 {
00108 public:
00109         // constructor
00110         CKdTree(int nMaximumNumberOfNodes = 10000);
00111         
00112         // destructor
00113         ~CKdTree();
00114         
00115         
00116         // build a kd-tree
00117         // Use userdata to attach metadata to the
00118         // values. Only the dimensions of the vectors
00119         // are used to build tree and search.
00120         // In the NN results, you get the full vector, with
00121         // the userdata in the upper elements of the vector.
00122         // Casting of float values to the appropriate type
00123         // has to be handled by user.
00124         void Build(float **ppfValues, int nLow, int nHigh, int nBucketSize, int nDimensions, int nUserDataSize);
00125 
00126         // nearest neighbor only
00127         void NearestNeighbor(const float *pQuery, float &fError, float*& pfNN, int nMaximumLeavesToVisit = -1);
00128         void NearestNeighborBBF(const float *pfQuery, float &fError, float *&pfNN, int nMaximumLeavesToVisit = -1); // with best bin first strategy
00129         
00130         // nearest neighbor with list of best elements
00131         void NearestNeighbor(const float *pQuery, float &fError, CKdPriorityQueue *&pNNList, int nMaximumLeavesToVisit = -1);
00132         void NearestNeighborBBF(const float *pQuery, float &fError, CKdPriorityQueue *&pNNList, int nMaximumLeavesToVisit = -1); // with best bin first strategy
00133         
00134 
00135 private:
00136         // private methods
00137         void Dispose();
00138         CKdTreeNode* BuildRecursive(float** ppfValues,int nLow, int nHigh, KdBoundingBox* pCurrentBoundingBox, int nCurrentDepth);
00139         void DisposeRecursive(CKdTreeNode *pNode);
00140         void NearestNeighborRecursive(CKdTreeNode* pNode, const float *pQuery);
00141         void NearestNeighborRecursiveBBF(CKdTreeNode* pNode, const float *pQuery, float fDistanceBB);
00142         
00143         
00144         // root node
00145         CKdTreeNode *m_pRoot;
00146         // maximum bucket size in tree
00147         int m_nBucketSize;
00148         // number of dimensions of vectors
00149         int m_nDimensions;
00150         // size of userdata in vectors
00151         int     m_nUserDataSize;
00152         // m_nDimensions + m_nUserDataSize
00153         int m_nTotalVectorSize;
00154         // number of leaves
00155         int m_nLeaves;
00156         // bounding box of whole tree (calculated in build process)
00157         KdBoundingBox m_EnclosingBox;
00158         
00159         // used for query recursion
00160         float m_fCurrentMinDistance;
00161         float *m_pNearestNeighbor;
00162         // used when a maximum number of nodes to visit is provided
00163         int m_nMaximumLeavesToVisit;
00164         // queue to enable second closest element
00165         CKdPriorityQueue *m_pNearestNeighborList;
00166         CKdPriorityQueue *m_pNearestNeighborList_;
00167         // needed for BBF
00168         CKdPriorityQueue *m_pNodeListBBF;
00169 };
00170 
00171 
00172 
00173 #endif // _KD_TREE_H_


asr_ivt
Author(s): Allgeyer Tobias, Hutmacher Robin, Kleinert Daniel, Meißner Pascal, Scholz Jonas, Stöckle Patrick
autogenerated on Thu Jun 6 2019 21:46:57