00001 #include "Optimization.h"
00002 #include "cv.h"
00003 #include "highgui.h"
00004 #include <time.h>
00005 #include <vector>
00006 #include <iostream>
00007 #include <string>
00008 using namespace std;
00009 using namespace alvar;
00010
00011 const int res=640;
00012 const double poly_res=8.0;
00013
00014 double random(int dist_type, double param1, double param2) {
00015 static CvRNG rng=0;
00016 if (rng == 0) rng = cvRNG(time(0));
00017 double m_data;
00018 CvMat m = cvMat(1, 1, CV_64F, &m_data);
00019 cvRandArr(&rng, &m, dist_type, cvScalar(param1), cvScalar(param2));
00020 return m_data;
00021 }
00022
00023 double get_y(double x, double a, double b, double c, double d, double e) {
00024 return (a*x*x*x*x + b*x*x*x + c*x*x + d*x + e);
00025 }
00026
00027
00028 bool get_measurement(double *x, double *y, double a, double b, double c, double d, double e) {
00029 double xx = random(CV_RAND_UNI, -(poly_res/2), +(poly_res/2));
00030 double yy = get_y(xx, a, b, c, d, e);
00031 double ry = random(CV_RAND_NORMAL, 0, poly_res/8);
00032 yy += ry;
00033 *x = xx;
00034 *y = yy;
00035 if (*y < -(poly_res/2)) return false;
00036 if (*y >= (poly_res/2)) return false;
00037 return true;
00038 }
00039
00040 void Estimate(CvMat* state, CvMat *projection, void *param) {
00041 double *measx=(double *)param;
00042 int data_degree = state->rows-1;
00043 double a = (data_degree >= 4? cvmGet(state, 4, 0) : 0);
00044 double b = (data_degree >= 3? cvmGet(state, 3, 0) : 0);
00045 double c = (data_degree >= 2? cvmGet(state, 2, 0) : 0);
00046 double d = (data_degree >= 1? cvmGet(state, 1, 0) : 0);
00047 double e = (data_degree >= 0? cvmGet(state, 0, 0) : 0);
00048 for (int i=0; i<projection->rows; i++) {
00049 cvmSet(projection, i, 0, get_y(measx[i], a, b, c, d, e));
00050 }
00051 }
00052
00053 int main(int argc, char *argv[])
00054 {
00055 try {
00056
00057 std::string filename(argv[0]);
00058 filename = filename.substr(filename.find_last_of('\\') + 1);
00059 std::cout << "SampleOptimization" << std::endl;
00060 std::cout << "==================" << std::endl;
00061 std::cout << std::endl;
00062 std::cout << "Description:" << std::endl;
00063 std::cout << " This is an example of how to use the 'Optimization' class. Random data" << std::endl;
00064 std::cout << " is generated and approximated using curves of increasing degrees." << std::endl;
00065 std::cout << std::endl;
00066 std::cout << "Usage:" << std::endl;
00067 std::cout << " " << filename << std::endl;
00068 std::cout << std::endl;
00069 std::cout << "Keyboard Shortcuts:" << std::endl;
00070 std::cout << " any key: cycle through datasets" << std::endl;
00071 std::cout << " q: quit" << std::endl;
00072 std::cout << std::endl;
00073
00074
00075 IplImage *img = cvCreateImage(cvSize(res,res), IPL_DEPTH_8U, 3);
00076 cvNamedWindow("SampleOptimization");
00077 for (int data_degree=0; data_degree<5; data_degree++) {
00078 double a = (data_degree >= 4? random(CV_RAND_UNI, -0.5, 0.5) : 0);
00079 double b = (data_degree >= 3? random(CV_RAND_UNI, -0.5, 0.5) : 0);
00080 double c = (data_degree >= 2? random(CV_RAND_UNI, -0.5, 0.5) : 0);
00081 double d = (data_degree >= 1? random(CV_RAND_UNI, -0.5, 0.5) : 0);
00082 double e = (data_degree >= 0? random(CV_RAND_UNI, -0.5, 0.5) : 0);
00083 cvZero(img);
00084 vector<CvPoint2D32f> measvec;
00085 for (int i=0; i<1000; i++) {
00086 double x, y;
00087 if (get_measurement(&x, &y, a, b, c, d, e)) {
00088 measvec.push_back(cvPoint2D32f(x, y));
00089 x = (x*res/poly_res)+(res/2);
00090 y = (y*res/poly_res)+(res/2);
00091 cvCircle(img, cvPoint(int(x), int(y)), 1, CV_RGB(0,255,0));
00092 }
00093 }
00094 cvShowImage("SampleOptimization", img);
00095 cvWaitKey(10);
00096 double measx[1000];
00097 CvMat *meas = cvCreateMat(measvec.size(), 1, CV_64F);
00098 for (size_t i=0; i<measvec.size(); i++) {
00099 measx[i] = measvec[i].x;
00100 cvmSet(meas, i, 0, measvec[i].y);
00101 }
00102 for (int degree=0; degree<5; degree++)
00103 {
00104 double param_data[5]={0};
00105 CvMat param = cvMat(degree+1, 1, CV_64F, param_data);
00106 Optimization opt(param.rows, meas->rows);
00107 opt.Optimize(¶m, meas, 0.1, 100, Estimate, measx);
00108 double a = (degree >= 4? cvmGet(¶m, 4, 0) : 0);
00109 double b = (degree >= 3? cvmGet(¶m, 3, 0) : 0);
00110 double c = (degree >= 2? cvmGet(¶m, 2, 0) : 0);
00111 double d = (degree >= 1? cvmGet(¶m, 1, 0) : 0);
00112 double e = (degree >= 0? cvmGet(¶m, 0, 0) : 0);
00113 const int step=5;
00114 for (int x2=step; x2<res; x2+=step) {
00115 int x1 = x2-step;
00116 double xx1 = (x1*poly_res/res)-(poly_res/2);
00117 double xx2 = (x2*poly_res/res)-(poly_res/2);
00118 double yy1 = get_y(xx1, a, b, c, d, e);
00119 double yy2 = get_y(xx2, a, b, c, d, e);
00120 int y1 = int((yy1*res/poly_res)+(res/2));
00121 int y2 = int((yy2*res/poly_res)+(res/2));
00122 cvLine(img, cvPoint(x1,y1), cvPoint(x2,y2), CV_RGB(degree*50,255-(degree*50),255));
00123 }
00124 cvShowImage("SampleOptimization", img);
00125 cvWaitKey(10);
00126 }
00127 cvReleaseMat(&meas);
00128 cvShowImage("SampleOptimization", img);
00129 int key = cvWaitKey(0);
00130 if (key == 'q') {
00131 break;
00132 }
00133 }
00134 cvReleaseImage(&img);
00135 return 0;
00136 }
00137 catch (const std::exception &e) {
00138 std::cout << "Exception: " << e.what() << endl;
00139 }
00140 catch (...) {
00141 std::cout << "Exception: unknown" << std::endl;
00142 }
00143 }