SuiteSparseQRSupport.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_SUITESPARSEQRSUPPORT_H
00011 #define EIGEN_SUITESPARSEQRSUPPORT_H
00012 
00013 namespace Eigen {
00014   
00015   template<typename MatrixType> class SPQR; 
00016   template<typename SPQRType> struct SPQRMatrixQReturnType; 
00017   template<typename SPQRType> struct SPQRMatrixQTransposeReturnType; 
00018   template <typename SPQRType, typename Derived> struct SPQR_QProduct;
00019   namespace internal {
00020     template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
00021     {
00022       typedef typename SPQRType::MatrixType ReturnType;
00023     };
00024     template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
00025     {
00026       typedef typename SPQRType::MatrixType ReturnType;
00027     };
00028     template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
00029     {
00030       typedef typename Derived::PlainObject ReturnType;
00031     };
00032   } // End namespace internal
00033   
00056 template<typename _MatrixType>
00057 class SPQR
00058 {
00059   public:
00060     typedef typename _MatrixType::Scalar Scalar;
00061     typedef typename _MatrixType::RealScalar RealScalar;
00062     typedef UF_long Index ; 
00063     typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType;
00064     typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
00065   public:
00066     SPQR() 
00067     : m_ordering(SPQR_ORDERING_DEFAULT),
00068       m_allow_tol(SPQR_DEFAULT_TOL),
00069       m_tolerance (NumTraits<Scalar>::epsilon())
00070     { 
00071       cholmod_l_start(&m_cc);
00072     }
00073     
00074     SPQR(const _MatrixType& matrix) 
00075     : m_ordering(SPQR_ORDERING_DEFAULT),
00076       m_allow_tol(SPQR_DEFAULT_TOL),
00077       m_tolerance (NumTraits<Scalar>::epsilon())
00078     {
00079       cholmod_l_start(&m_cc);
00080       compute(matrix);
00081     }
00082     
00083     ~SPQR()
00084     {
00085       // Calls SuiteSparseQR_free()
00086       cholmod_l_free_sparse(&m_H, &m_cc);
00087       cholmod_l_free_sparse(&m_cR, &m_cc);
00088       cholmod_l_free_dense(&m_HTau, &m_cc);
00089       std::free(m_E);
00090       std::free(m_HPinv);
00091       cholmod_l_finish(&m_cc);
00092     }
00093     void compute(const _MatrixType& matrix)
00094     {
00095       MatrixType mat(matrix);
00096       cholmod_sparse A; 
00097       A = viewAsCholmod(mat);
00098       Index col = matrix.cols();
00099       m_rank = SuiteSparseQR<Scalar>(m_ordering, m_tolerance, col, &A, 
00100                              &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
00101 
00102       if (!m_cR)
00103       {
00104         m_info = NumericalIssue; 
00105         m_isInitialized = false;
00106         return;
00107       }
00108       m_info = Success;
00109       m_isInitialized = true;
00110       m_isRUpToDate = false;
00111     }
00115     inline Index rows() const {return m_H->nrow; }
00116     
00120     inline Index cols() const { return m_cR->ncol; }
00121    
00126     template<typename Rhs>
00127     inline const internal::solve_retval<SPQR, Rhs> solve(const MatrixBase<Rhs>& B) const 
00128     {
00129       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
00130       eigen_assert(this->rows()==B.rows()
00131                     && "SPQR::solve(): invalid number of rows of the right hand side matrix B");
00132           return internal::solve_retval<SPQR, Rhs>(*this, B.derived());
00133     }
00134     
00135     template<typename Rhs, typename Dest>
00136     void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
00137     {
00138       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
00139       eigen_assert(b.cols()==1 && "This method is for vectors only");
00140       
00141       //Compute Q^T * b
00142       Dest y; 
00143       y = matrixQ().transpose() * b;
00144         // Solves with the triangular matrix R
00145       Index rk = this->rank();
00146       y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y.topRows(rk));
00147       y.bottomRows(cols()-rk).setZero();
00148       // Apply the column permutation 
00149       dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
00150       
00151       m_info = Success;
00152     }
00153     
00156     const MatrixType matrixR() const
00157     {
00158       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
00159       if(!m_isRUpToDate) {
00160         m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::Index>(*m_cR);
00161         m_isRUpToDate = true;
00162       }
00163       return m_R;
00164     }
00166     SPQRMatrixQReturnType<SPQR> matrixQ() const
00167     {
00168       return SPQRMatrixQReturnType<SPQR>(*this);
00169     }
00171     PermutationType colsPermutation() const
00172     { 
00173       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
00174       Index n = m_cR->ncol;
00175       PermutationType colsPerm(n);
00176       for(Index j = 0; j <n; j++) colsPerm.indices()(j) = m_E[j];
00177       return colsPerm; 
00178       
00179     }
00184     Index rank() const
00185     {
00186       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
00187       return m_cc.SPQR_istat[4];
00188     }
00190     void setSPQROrdering(int ord) { m_ordering = ord;}
00192     void setPivotThreshold(const RealScalar& tol) { m_tolerance = tol; }
00193     
00195     cholmod_common *cholmodCommon() const { return &m_cc; }
00196     
00197     
00203     ComputationInfo info() const
00204     {
00205       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
00206       return m_info;
00207     }
00208   protected:
00209     bool m_isInitialized;
00210     bool m_analysisIsOk;
00211     bool m_factorizationIsOk;
00212     mutable bool m_isRUpToDate;
00213     mutable ComputationInfo m_info;
00214     int m_ordering; // Ordering method to use, see SPQR's manual
00215     int m_allow_tol; // Allow to use some tolerance during numerical factorization.
00216     RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
00217     mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
00218     mutable MatrixType m_R; // The sparse matrix R in Eigen format
00219     mutable Index *m_E; // The permutation applied to columns
00220     mutable cholmod_sparse *m_H;  //The householder vectors
00221     mutable Index *m_HPinv; // The row permutation of H
00222     mutable cholmod_dense *m_HTau; // The Householder coefficients
00223     mutable Index m_rank; // The rank of the matrix
00224     mutable cholmod_common m_cc; // Workspace and parameters
00225     template<typename ,typename > friend struct SPQR_QProduct;
00226 };
00227 
00228 template <typename SPQRType, typename Derived>
00229 struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
00230 {
00231   typedef typename SPQRType::Scalar Scalar;
00232   typedef typename SPQRType::Index Index;
00233   //Define the constructor to get reference to argument types
00234   SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
00235   
00236   inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
00237   inline Index cols() const { return m_other.cols(); }
00238   // Assign to a vector
00239   template<typename ResType>
00240   void evalTo(ResType& res) const
00241   {
00242     cholmod_dense y_cd;
00243     cholmod_dense *x_cd; 
00244     int method = m_transpose ? SPQR_QTX : SPQR_QX; 
00245     cholmod_common *cc = m_spqr.cholmodCommon();
00246     y_cd = viewAsCholmod(m_other.const_cast_derived());
00247     x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
00248     res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
00249     cholmod_l_free_dense(&x_cd, cc);
00250   }
00251   const SPQRType& m_spqr; 
00252   const Derived& m_other; 
00253   bool m_transpose; 
00254   
00255 };
00256 template<typename SPQRType>
00257 struct SPQRMatrixQReturnType{
00258   
00259   SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
00260   template<typename Derived>
00261   SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
00262   {
00263     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
00264   }
00265   SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
00266   {
00267     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
00268   }
00269   // To use for operations with the transpose of Q
00270   SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
00271   {
00272     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
00273   }
00274   const SPQRType& m_spqr;
00275 };
00276 
00277 template<typename SPQRType>
00278 struct SPQRMatrixQTransposeReturnType{
00279   SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
00280   template<typename Derived>
00281   SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
00282   {
00283     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
00284   }
00285   const SPQRType& m_spqr;
00286 };
00287 
00288 namespace internal {
00289   
00290 template<typename _MatrixType, typename Rhs>
00291 struct solve_retval<SPQR<_MatrixType>, Rhs>
00292   : solve_retval_base<SPQR<_MatrixType>, Rhs>
00293 {
00294   typedef SPQR<_MatrixType> Dec;
00295   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
00296 
00297   template<typename Dest> void evalTo(Dest& dst) const
00298   {
00299     dec()._solve(rhs(),dst);
00300   }
00301 };
00302 
00303 } // end namespace internal
00304 
00305 }// End namespace Eigen
00306 #endif


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Sat Jun 8 2019 19:39:43