00001 // Copyright 2018 The Abseil Authors. 00002 // 00003 // Licensed under the Apache License, Version 2.0 (the "License"); 00004 // you may not use this file except in compliance with the License. 00005 // You may obtain a copy of the License at 00006 // 00007 // https://www.apache.org/licenses/LICENSE-2.0 00008 // 00009 // Unless required by applicable law or agreed to in writing, software 00010 // distributed under the License is distributed on an "AS IS" BASIS, 00011 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00012 // See the License for the specific language governing permissions and 00013 // limitations under the License. 00014 // 00015 // ----------------------------------------------------------------------------- 00016 // File: node_hash_set.h 00017 // ----------------------------------------------------------------------------- 00018 // 00019 // An `absl::node_hash_set<T>` is an unordered associative container designed to 00020 // be a more efficient replacement for `std::unordered_set`. Like 00021 // `unordered_set`, search, insertion, and deletion of map elements can be done 00022 // as an `O(1)` operation. However, `node_hash_set` (and other unordered 00023 // associative containers known as the collection of Abseil "Swiss tables") 00024 // contain other optimizations that result in both memory and computation 00025 // advantages. 00026 // 00027 // In most cases, your default choice for a hash table should be a map of type 00028 // `flat_hash_map` or a set of type `flat_hash_set`. However, if you need 00029 // pointer stability, a `node_hash_set` should be your preferred choice. As 00030 // well, if you are migrating your code from using `std::unordered_set`, a 00031 // `node_hash_set` should be an easy migration. Consider migrating to 00032 // `node_hash_set` and perhaps converting to a more efficient `flat_hash_set` 00033 // upon further review. 00034 00035 #ifndef ABSL_CONTAINER_NODE_HASH_SET_H_ 00036 #define ABSL_CONTAINER_NODE_HASH_SET_H_ 00037 00038 #include <type_traits> 00039 00040 #include "absl/algorithm/container.h" 00041 #include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export 00042 #include "absl/container/internal/node_hash_policy.h" 00043 #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export 00044 #include "absl/memory/memory.h" 00045 00046 namespace absl { 00047 namespace container_internal { 00048 template <typename T> 00049 struct NodeHashSetPolicy; 00050 } // namespace container_internal 00051 00052 // ----------------------------------------------------------------------------- 00053 // absl::node_hash_set 00054 // ----------------------------------------------------------------------------- 00055 // 00056 // An `absl::node_hash_set<T>` is an unordered associative container which 00057 // has been optimized for both speed and memory footprint in most common use 00058 // cases. Its interface is similar to that of `std::unordered_set<T>` with the 00059 // following notable differences: 00060 // 00061 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and 00062 // `insert()`, provided that the map is provided a compatible heterogeneous 00063 // hashing function and equality operator. 00064 // * Contains a `capacity()` member function indicating the number of element 00065 // slots (open, deleted, and empty) within the hash set. 00066 // * Returns `void` from the `erase(iterator)` overload. 00067 // 00068 // By default, `node_hash_set` uses the `absl::Hash` hashing framework. 00069 // All fundamental and Abseil types that support the `absl::Hash` framework have 00070 // a compatible equality operator for comparing insertions into `node_hash_set`. 00071 // If your type is not yet supported by the `absl::Hash` framework, see 00072 // absl/hash/hash.h for information on extending Abseil hashing to user-defined 00073 // types. 00074 // 00075 // Example: 00076 // 00077 // // Create a node hash set of three strings 00078 // absl::node_hash_map<std::string, std::string> ducks = 00079 // {"huey", "dewey"}, "louie"}; 00080 // 00081 // // Insert a new element into the node hash map 00082 // ducks.insert("donald"}; 00083 // 00084 // // Force a rehash of the node hash map 00085 // ducks.rehash(0); 00086 // 00087 // // See if "dewey" is present 00088 // if (ducks.contains("dewey")) { 00089 // std::cout << "We found dewey!" << std::endl; 00090 // } 00091 template <class T, class Hash = absl::container_internal::hash_default_hash<T>, 00092 class Eq = absl::container_internal::hash_default_eq<T>, 00093 class Alloc = std::allocator<T>> 00094 class node_hash_set 00095 : public absl::container_internal::raw_hash_set< 00096 absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> { 00097 using Base = typename node_hash_set::raw_hash_set; 00098 00099 public: 00100 // Constructors and Assignment Operators 00101 // 00102 // A node_hash_set supports the same overload set as `std::unordered_map` 00103 // for construction and assignment: 00104 // 00105 // * Default constructor 00106 // 00107 // // No allocation for the table's elements is made. 00108 // absl::node_hash_set<std::string> set1; 00109 // 00110 // * Initializer List constructor 00111 // 00112 // absl::node_hash_set<std::string> set2 = 00113 // {{"huey"}, {"dewey"}, {"louie"},}; 00114 // 00115 // * Copy constructor 00116 // 00117 // absl::node_hash_set<std::string> set3(set2); 00118 // 00119 // * Copy assignment operator 00120 // 00121 // // Hash functor and Comparator are copied as well 00122 // absl::node_hash_set<std::string> set4; 00123 // set4 = set3; 00124 // 00125 // * Move constructor 00126 // 00127 // // Move is guaranteed efficient 00128 // absl::node_hash_set<std::string> set5(std::move(set4)); 00129 // 00130 // * Move assignment operator 00131 // 00132 // // May be efficient if allocators are compatible 00133 // absl::node_hash_set<std::string> set6; 00134 // set6 = std::move(set5); 00135 // 00136 // * Range constructor 00137 // 00138 // std::vector<std::string> v = {"a", "b"}; 00139 // absl::node_hash_set<std::string> set7(v.begin(), v.end()); 00140 node_hash_set() {} 00141 using Base::Base; 00142 00143 // node_hash_set::begin() 00144 // 00145 // Returns an iterator to the beginning of the `node_hash_set`. 00146 using Base::begin; 00147 00148 // node_hash_set::cbegin() 00149 // 00150 // Returns a const iterator to the beginning of the `node_hash_set`. 00151 using Base::cbegin; 00152 00153 // node_hash_set::cend() 00154 // 00155 // Returns a const iterator to the end of the `node_hash_set`. 00156 using Base::cend; 00157 00158 // node_hash_set::end() 00159 // 00160 // Returns an iterator to the end of the `node_hash_set`. 00161 using Base::end; 00162 00163 // node_hash_set::capacity() 00164 // 00165 // Returns the number of element slots (assigned, deleted, and empty) 00166 // available within the `node_hash_set`. 00167 // 00168 // NOTE: this member function is particular to `absl::node_hash_set` and is 00169 // not provided in the `std::unordered_map` API. 00170 using Base::capacity; 00171 00172 // node_hash_set::empty() 00173 // 00174 // Returns whether or not the `node_hash_set` is empty. 00175 using Base::empty; 00176 00177 // node_hash_set::max_size() 00178 // 00179 // Returns the largest theoretical possible number of elements within a 00180 // `node_hash_set` under current memory constraints. This value can be thought 00181 // of the largest value of `std::distance(begin(), end())` for a 00182 // `node_hash_set<T>`. 00183 using Base::max_size; 00184 00185 // node_hash_set::size() 00186 // 00187 // Returns the number of elements currently within the `node_hash_set`. 00188 using Base::size; 00189 00190 // node_hash_set::clear() 00191 // 00192 // Removes all elements from the `node_hash_set`. Invalidates any references, 00193 // pointers, or iterators referring to contained elements. 00194 // 00195 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking 00196 // the underlying buffer call `erase(begin(), end())`. 00197 using Base::clear; 00198 00199 // node_hash_set::erase() 00200 // 00201 // Erases elements within the `node_hash_set`. Erasing does not trigger a 00202 // rehash. Overloads are listed below. 00203 // 00204 // void erase(const_iterator pos): 00205 // 00206 // Erases the element at `position` of the `node_hash_set`, returning 00207 // `void`. 00208 // 00209 // NOTE: this return behavior is different than that of STL containers in 00210 // general and `std::unordered_map` in particular. 00211 // 00212 // iterator erase(const_iterator first, const_iterator last): 00213 // 00214 // Erases the elements in the open interval [`first`, `last`), returning an 00215 // iterator pointing to `last`. 00216 // 00217 // size_type erase(const key_type& key): 00218 // 00219 // Erases the element with the matching key, if it exists. 00220 using Base::erase; 00221 00222 // node_hash_set::insert() 00223 // 00224 // Inserts an element of the specified value into the `node_hash_set`, 00225 // returning an iterator pointing to the newly inserted element, provided that 00226 // an element with the given key does not already exist. If rehashing occurs 00227 // due to the insertion, all iterators are invalidated. Overloads are listed 00228 // below. 00229 // 00230 // std::pair<iterator,bool> insert(const T& value): 00231 // 00232 // Inserts a value into the `node_hash_set`. Returns a pair consisting of an 00233 // iterator to the inserted element (or to the element that prevented the 00234 // insertion) and a bool denoting whether the insertion took place. 00235 // 00236 // std::pair<iterator,bool> insert(T&& value): 00237 // 00238 // Inserts a moveable value into the `node_hash_set`. Returns a pair 00239 // consisting of an iterator to the inserted element (or to the element that 00240 // prevented the insertion) and a bool denoting whether the insertion took 00241 // place. 00242 // 00243 // iterator insert(const_iterator hint, const T& value): 00244 // iterator insert(const_iterator hint, T&& value): 00245 // 00246 // Inserts a value, using the position of `hint` as a non-binding suggestion 00247 // for where to begin the insertion search. Returns an iterator to the 00248 // inserted element, or to the existing element that prevented the 00249 // insertion. 00250 // 00251 // void insert(InputIterator first, InputIterator last): 00252 // 00253 // Inserts a range of values [`first`, `last`). 00254 // 00255 // NOTE: Although the STL does not specify which element may be inserted if 00256 // multiple keys compare equivalently, for `node_hash_set` we guarantee the 00257 // first match is inserted. 00258 // 00259 // void insert(std::initializer_list<T> ilist): 00260 // 00261 // Inserts the elements within the initializer list `ilist`. 00262 // 00263 // NOTE: Although the STL does not specify which element may be inserted if 00264 // multiple keys compare equivalently within the initializer list, for 00265 // `node_hash_set` we guarantee the first match is inserted. 00266 using Base::insert; 00267 00268 // node_hash_set::emplace() 00269 // 00270 // Inserts an element of the specified value by constructing it in-place 00271 // within the `node_hash_set`, provided that no element with the given key 00272 // already exists. 00273 // 00274 // The element may be constructed even if there already is an element with the 00275 // key in the container, in which case the newly constructed element will be 00276 // destroyed immediately. 00277 // 00278 // If rehashing occurs due to the insertion, all iterators are invalidated. 00279 using Base::emplace; 00280 00281 // node_hash_set::emplace_hint() 00282 // 00283 // Inserts an element of the specified value by constructing it in-place 00284 // within the `node_hash_set`, using the position of `hint` as a non-binding 00285 // suggestion for where to begin the insertion search, and only inserts 00286 // provided that no element with the given key already exists. 00287 // 00288 // The element may be constructed even if there already is an element with the 00289 // key in the container, in which case the newly constructed element will be 00290 // destroyed immediately. 00291 // 00292 // If rehashing occurs due to the insertion, all iterators are invalidated. 00293 using Base::emplace_hint; 00294 00295 // node_hash_set::extract() 00296 // 00297 // Extracts the indicated element, erasing it in the process, and returns it 00298 // as a C++17-compatible node handle. Overloads are listed below. 00299 // 00300 // node_type extract(const_iterator position): 00301 // 00302 // Extracts the element at the indicated position and returns a node handle 00303 // owning that extracted data. 00304 // 00305 // node_type extract(const key_type& x): 00306 // 00307 // Extracts the element with the key matching the passed key value and 00308 // returns a node handle owning that extracted data. If the `node_hash_set` 00309 // does not contain an element with a matching key, this function returns an 00310 // empty node handle. 00311 using Base::extract; 00312 00313 // node_hash_set::merge() 00314 // 00315 // Extracts elements from a given `source` flat hash map into this 00316 // `node_hash_set`. If the destination `node_hash_set` already contains an 00317 // element with an equivalent key, that element is not extracted. 00318 using Base::merge; 00319 00320 // node_hash_set::swap(node_hash_set& other) 00321 // 00322 // Exchanges the contents of this `node_hash_set` with those of the `other` 00323 // flat hash map, avoiding invocation of any move, copy, or swap operations on 00324 // individual elements. 00325 // 00326 // All iterators and references on the `node_hash_set` remain valid, excepting 00327 // for the past-the-end iterator, which is invalidated. 00328 // 00329 // `swap()` requires that the flat hash set's hashing and key equivalence 00330 // functions be Swappable, and are exchaged using unqualified calls to 00331 // non-member `swap()`. If the map's allocator has 00332 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value` 00333 // set to `true`, the allocators are also exchanged using an unqualified call 00334 // to non-member `swap()`; otherwise, the allocators are not swapped. 00335 using Base::swap; 00336 00337 // node_hash_set::rehash(count) 00338 // 00339 // Rehashes the `node_hash_set`, setting the number of slots to be at least 00340 // the passed value. If the new number of slots increases the load factor more 00341 // than the current maximum load factor 00342 // (`count` < `size()` / `max_load_factor()`), then the new number of slots 00343 // will be at least `size()` / `max_load_factor()`. 00344 // 00345 // To force a rehash, pass rehash(0). 00346 // 00347 // NOTE: unlike behavior in `std::unordered_set`, references are also 00348 // invalidated upon a `rehash()`. 00349 using Base::rehash; 00350 00351 // node_hash_set::reserve(count) 00352 // 00353 // Sets the number of slots in the `node_hash_set` to the number needed to 00354 // accommodate at least `count` total elements without exceeding the current 00355 // maximum load factor, and may rehash the container if needed. 00356 using Base::reserve; 00357 00358 // node_hash_set::contains() 00359 // 00360 // Determines whether an element comparing equal to the given `key` exists 00361 // within the `node_hash_set`, returning `true` if so or `false` otherwise. 00362 using Base::contains; 00363 00364 // node_hash_set::count(const Key& key) const 00365 // 00366 // Returns the number of elements comparing equal to the given `key` within 00367 // the `node_hash_set`. note that this function will return either `1` or `0` 00368 // since duplicate elements are not allowed within a `node_hash_set`. 00369 using Base::count; 00370 00371 // node_hash_set::equal_range() 00372 // 00373 // Returns a closed range [first, last], defined by a `std::pair` of two 00374 // iterators, containing all elements with the passed key in the 00375 // `node_hash_set`. 00376 using Base::equal_range; 00377 00378 // node_hash_set::find() 00379 // 00380 // Finds an element with the passed `key` within the `node_hash_set`. 00381 using Base::find; 00382 00383 // node_hash_set::bucket_count() 00384 // 00385 // Returns the number of "buckets" within the `node_hash_set`. Note that 00386 // because a flat hash map contains all elements within its internal storage, 00387 // this value simply equals the current capacity of the `node_hash_set`. 00388 using Base::bucket_count; 00389 00390 // node_hash_set::load_factor() 00391 // 00392 // Returns the current load factor of the `node_hash_set` (the average number 00393 // of slots occupied with a value within the hash map). 00394 using Base::load_factor; 00395 00396 // node_hash_set::max_load_factor() 00397 // 00398 // Manages the maximum load factor of the `node_hash_set`. Overloads are 00399 // listed below. 00400 // 00401 // float node_hash_set::max_load_factor() 00402 // 00403 // Returns the current maximum load factor of the `node_hash_set`. 00404 // 00405 // void node_hash_set::max_load_factor(float ml) 00406 // 00407 // Sets the maximum load factor of the `node_hash_set` to the passed value. 00408 // 00409 // NOTE: This overload is provided only for API compatibility with the STL; 00410 // `node_hash_set` will ignore any set load factor and manage its rehashing 00411 // internally as an implementation detail. 00412 using Base::max_load_factor; 00413 00414 // node_hash_set::get_allocator() 00415 // 00416 // Returns the allocator function associated with this `node_hash_set`. 00417 using Base::get_allocator; 00418 00419 // node_hash_set::hash_function() 00420 // 00421 // Returns the hashing function used to hash the keys within this 00422 // `node_hash_set`. 00423 using Base::hash_function; 00424 00425 // node_hash_set::key_eq() 00426 // 00427 // Returns the function used for comparing keys equality. 00428 using Base::key_eq; 00429 00430 ABSL_DEPRECATED("Call `hash_function()` instead.") 00431 typename Base::hasher hash_funct() { return this->hash_function(); } 00432 00433 ABSL_DEPRECATED("Call `rehash()` instead.") 00434 void resize(typename Base::size_type hint) { this->rehash(hint); } 00435 }; 00436 00437 namespace container_internal { 00438 00439 template <class T> 00440 struct NodeHashSetPolicy 00441 : absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> { 00442 using key_type = T; 00443 using init_type = T; 00444 using constant_iterators = std::true_type; 00445 00446 template <class Allocator, class... Args> 00447 static T* new_element(Allocator* alloc, Args&&... args) { 00448 using ValueAlloc = 00449 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>; 00450 ValueAlloc value_alloc(*alloc); 00451 T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1); 00452 absl::allocator_traits<ValueAlloc>::construct(value_alloc, res, 00453 std::forward<Args>(args)...); 00454 return res; 00455 } 00456 00457 template <class Allocator> 00458 static void delete_element(Allocator* alloc, T* elem) { 00459 using ValueAlloc = 00460 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>; 00461 ValueAlloc value_alloc(*alloc); 00462 absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem); 00463 absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1); 00464 } 00465 00466 template <class F, class... Args> 00467 static decltype(absl::container_internal::DecomposeValue( 00468 std::declval<F>(), std::declval<Args>()...)) 00469 apply(F&& f, Args&&... args) { 00470 return absl::container_internal::DecomposeValue( 00471 std::forward<F>(f), std::forward<Args>(args)...); 00472 } 00473 00474 static size_t element_space_used(const T*) { return sizeof(T); } 00475 }; 00476 } // namespace container_internal 00477 00478 namespace container_algorithm_internal { 00479 00480 // Specialization of trait in absl/algorithm/container.h 00481 template <class Key, class Hash, class KeyEqual, class Allocator> 00482 struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>> 00483 : std::true_type {}; 00484 00485 } // namespace container_algorithm_internal 00486 } // namespace absl 00487 00488 #endif // ABSL_CONTAINER_NODE_HASH_SET_H_