MathFunctions.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2009 Rohit Garg <rpg.314@gmail.com>
00005 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
00006 //
00007 // This Source Code Form is subject to the terms of the Mozilla
00008 // Public License v. 2.0. If a copy of the MPL was not distributed
00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00010 
00011 #ifndef EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
00012 #define EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
00013 
00014 namespace Eigen { 
00015 
00016 namespace internal {
00017 
00019 template<typename Packet> inline static Packet pasin(Packet a) { return std::asin(a); }
00020 
00021 #ifdef EIGEN_VECTORIZE_SSE
00022 
00023 template<> EIGEN_DONT_INLINE Packet4f pasin(Packet4f x)
00024 {
00025   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5);
00026   _EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5);
00027   _EIGEN_DECLARE_CONST_Packet4f(3half, 1.5);
00028 
00029   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
00030 
00031   _EIGEN_DECLARE_CONST_Packet4f(pi, 3.141592654);
00032   _EIGEN_DECLARE_CONST_Packet4f(pi_over_2, 3.141592654*0.5);
00033 
00034   _EIGEN_DECLARE_CONST_Packet4f(asin1, 4.2163199048E-2);
00035   _EIGEN_DECLARE_CONST_Packet4f(asin2, 2.4181311049E-2);
00036   _EIGEN_DECLARE_CONST_Packet4f(asin3, 4.5470025998E-2);
00037   _EIGEN_DECLARE_CONST_Packet4f(asin4, 7.4953002686E-2);
00038   _EIGEN_DECLARE_CONST_Packet4f(asin5, 1.6666752422E-1);
00039 
00040   Packet4f a = pabs(x);//got the absolute value
00041 
00042   Packet4f sign_bit= _mm_and_ps(x, p4f_sign_mask);//extracted the sign bit
00043 
00044   Packet4f z1,z2;//will need them during computation    
00045 
00046 
00047 //will compute the two branches for asin
00048 //so first compare with half
00049 
00050   Packet4f branch_mask= _mm_cmpgt_ps(a, p4f_half);//this is to select which branch to take
00051 //both will be taken, and finally results will be merged
00052 //the branch for values >0.5
00053 
00054     {
00055 //the core series expansion 
00056     z1=pmadd(p4f_minus_half,a,p4f_half);
00057     Packet4f x1=psqrt(z1);
00058     Packet4f s1=pmadd(p4f_asin1, z1, p4f_asin2);
00059     Packet4f s2=pmadd(s1, z1, p4f_asin3);
00060     Packet4f s3=pmadd(s2,z1, p4f_asin4);
00061     Packet4f s4=pmadd(s3,z1, p4f_asin5);
00062     Packet4f temp=pmul(s4,z1);//not really a madd but a mul by z so that the next term can be a madd
00063     z1=pmadd(temp,x1,x1);
00064     z1=padd(z1,z1);
00065     z1=psub(p4f_pi_over_2,z1);
00066     }
00067 
00068     {
00069 //the core series expansion 
00070     Packet4f x2=a;
00071     z2=pmul(x2,x2);
00072     Packet4f s1=pmadd(p4f_asin1, z2, p4f_asin2);
00073     Packet4f s2=pmadd(s1, z2, p4f_asin3);
00074     Packet4f s3=pmadd(s2,z2, p4f_asin4);
00075     Packet4f s4=pmadd(s3,z2, p4f_asin5);
00076     Packet4f temp=pmul(s4,z2);//not really a madd but a mul by z so that the next term can be a madd
00077     z2=pmadd(temp,x2,x2);
00078     }
00079 
00080 /* select the correct result from the two branch evaluations */
00081   z1  = _mm_and_ps(branch_mask, z1);
00082   z2  = _mm_andnot_ps(branch_mask, z2);
00083   Packet4f z  = _mm_or_ps(z1,z2);
00084 
00085 /* update the sign */
00086   return _mm_xor_ps(z, sign_bit);
00087 }
00088 
00089 #endif // EIGEN_VECTORIZE_SSE
00090 
00091 } // end namespace internal
00092 
00093 } // end namespace Eigen
00094 
00095 #endif // EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H


win_eigen
Author(s): Daniel Stonier
autogenerated on Wed Sep 16 2015 07:11:13