MathFunctions.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2007 Julien Pommier
00005 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00006 //
00007 // This Source Code Form is subject to the terms of the Mozilla
00008 // Public License v. 2.0. If a copy of the MPL was not distributed
00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00010 
00011 /* The sin, cos, exp, and log functions of this file come from
00012  * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
00013  */
00014 
00015 #ifndef EIGEN_MATH_FUNCTIONS_SSE_H
00016 #define EIGEN_MATH_FUNCTIONS_SSE_H
00017 
00018 namespace Eigen {
00019 
00020 namespace internal {
00021 
00022 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00023 Packet4f plog<Packet4f>(const Packet4f& _x)
00024 {
00025   Packet4f x = _x;
00026   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
00027   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
00028   _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
00029 
00030   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000);
00031 
00032   /* the smallest non denormalized float number */
00033   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos,  0x00800000);
00034 
00035   /* natural logarithm computed for 4 simultaneous float
00036     return NaN for x <= 0
00037   */
00038   _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
00039   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f);
00040   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f);
00041   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f);
00042   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f);
00043   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f);
00044   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f);
00045   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f);
00046   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f);
00047   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f);
00048   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
00049   _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
00050 
00051 
00052   Packet4i emm0;
00053 
00054   Packet4f invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps());
00055 
00056   x = pmax(x, p4f_min_norm_pos);  /* cut off denormalized stuff */
00057   emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
00058 
00059   /* keep only the fractional part */
00060   x = _mm_and_ps(x, p4f_inv_mant_mask);
00061   x = _mm_or_ps(x, p4f_half);
00062 
00063   emm0 = _mm_sub_epi32(emm0, p4i_0x7f);
00064   Packet4f e = padd(_mm_cvtepi32_ps(emm0), p4f_1);
00065 
00066   /* part2:
00067      if( x < SQRTHF ) {
00068        e -= 1;
00069        x = x + x - 1.0;
00070      } else { x = x - 1.0; }
00071   */
00072   Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF);
00073   Packet4f tmp = _mm_and_ps(x, mask);
00074   x = psub(x, p4f_1);
00075   e = psub(e, _mm_and_ps(p4f_1, mask));
00076   x = padd(x, tmp);
00077 
00078   Packet4f x2 = pmul(x,x);
00079   Packet4f x3 = pmul(x2,x);
00080 
00081   Packet4f y, y1, y2;
00082   y  = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
00083   y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
00084   y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
00085   y  = pmadd(y , x, p4f_cephes_log_p2);
00086   y1 = pmadd(y1, x, p4f_cephes_log_p5);
00087   y2 = pmadd(y2, x, p4f_cephes_log_p8);
00088   y = pmadd(y, x3, y1);
00089   y = pmadd(y, x3, y2);
00090   y = pmul(y, x3);
00091 
00092   y1 = pmul(e, p4f_cephes_log_q1);
00093   tmp = pmul(x2, p4f_half);
00094   y = padd(y, y1);
00095   x = psub(x, tmp);
00096   y2 = pmul(e, p4f_cephes_log_q2);
00097   x = padd(x, y);
00098   x = padd(x, y2);
00099   return _mm_or_ps(x, invalid_mask); // negative arg will be NAN
00100 }
00101 
00102 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00103 Packet4f pexp<Packet4f>(const Packet4f& _x)
00104 {
00105   Packet4f x = _x;
00106   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
00107   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
00108   _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
00109 
00110 
00111   _EIGEN_DECLARE_CONST_Packet4f(exp_hi,  88.3762626647950f);
00112   _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);
00113 
00114   _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
00115   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
00116   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
00117 
00118   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
00119   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
00120   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
00121   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
00122   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
00123   _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
00124 
00125   Packet4f tmp = _mm_setzero_ps(), fx;
00126   Packet4i emm0;
00127 
00128   // clamp x
00129   x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo);
00130 
00131   /* express exp(x) as exp(g + n*log(2)) */
00132   fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half);
00133 
00134   /* how to perform a floorf with SSE: just below */
00135   emm0 = _mm_cvttps_epi32(fx);
00136   tmp  = _mm_cvtepi32_ps(emm0);
00137   /* if greater, substract 1 */
00138   Packet4f mask = _mm_cmpgt_ps(tmp, fx);
00139   mask = _mm_and_ps(mask, p4f_1);
00140   fx = psub(tmp, mask);
00141 
00142   tmp = pmul(fx, p4f_cephes_exp_C1);
00143   Packet4f z = pmul(fx, p4f_cephes_exp_C2);
00144   x = psub(x, tmp);
00145   x = psub(x, z);
00146 
00147   z = pmul(x,x);
00148 
00149   Packet4f y = p4f_cephes_exp_p0;
00150   y = pmadd(y, x, p4f_cephes_exp_p1);
00151   y = pmadd(y, x, p4f_cephes_exp_p2);
00152   y = pmadd(y, x, p4f_cephes_exp_p3);
00153   y = pmadd(y, x, p4f_cephes_exp_p4);
00154   y = pmadd(y, x, p4f_cephes_exp_p5);
00155   y = pmadd(y, z, x);
00156   y = padd(y, p4f_1);
00157 
00158   // build 2^n
00159   emm0 = _mm_cvttps_epi32(fx);
00160   emm0 = _mm_add_epi32(emm0, p4i_0x7f);
00161   emm0 = _mm_slli_epi32(emm0, 23);
00162   return pmul(y, _mm_castsi128_ps(emm0));
00163 }
00164 
00165 /* evaluation of 4 sines at onces, using SSE2 intrinsics.
00166 
00167    The code is the exact rewriting of the cephes sinf function.
00168    Precision is excellent as long as x < 8192 (I did not bother to
00169    take into account the special handling they have for greater values
00170    -- it does not return garbage for arguments over 8192, though, but
00171    the extra precision is missing).
00172 
00173    Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
00174    surprising but correct result.
00175 */
00176 
00177 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00178 Packet4f psin<Packet4f>(const Packet4f& _x)
00179 {
00180   Packet4f x = _x;
00181   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
00182   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
00183 
00184   _EIGEN_DECLARE_CONST_Packet4i(1, 1);
00185   _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
00186   _EIGEN_DECLARE_CONST_Packet4i(2, 2);
00187   _EIGEN_DECLARE_CONST_Packet4i(4, 4);
00188 
00189   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
00190 
00191   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
00192   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
00193   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
00194   _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
00195   _EIGEN_DECLARE_CONST_Packet4f(sincof_p1,  8.3321608736E-3f);
00196   _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
00197   _EIGEN_DECLARE_CONST_Packet4f(coscof_p0,  2.443315711809948E-005f);
00198   _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
00199   _EIGEN_DECLARE_CONST_Packet4f(coscof_p2,  4.166664568298827E-002f);
00200   _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
00201 
00202   Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
00203 
00204   Packet4i emm0, emm2;
00205   sign_bit = x;
00206   /* take the absolute value */
00207   x = pabs(x);
00208 
00209   /* take the modulo */
00210 
00211   /* extract the sign bit (upper one) */
00212   sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask);
00213 
00214   /* scale by 4/Pi */
00215   y = pmul(x, p4f_cephes_FOPI);
00216 
00217   /* store the integer part of y in mm0 */
00218   emm2 = _mm_cvttps_epi32(y);
00219   /* j=(j+1) & (~1) (see the cephes sources) */
00220   emm2 = _mm_add_epi32(emm2, p4i_1);
00221   emm2 = _mm_and_si128(emm2, p4i_not1);
00222   y = _mm_cvtepi32_ps(emm2);
00223   /* get the swap sign flag */
00224   emm0 = _mm_and_si128(emm2, p4i_4);
00225   emm0 = _mm_slli_epi32(emm0, 29);
00226   /* get the polynom selection mask
00227      there is one polynom for 0 <= x <= Pi/4
00228      and another one for Pi/4<x<=Pi/2
00229 
00230      Both branches will be computed.
00231   */
00232   emm2 = _mm_and_si128(emm2, p4i_2);
00233   emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
00234 
00235   Packet4f swap_sign_bit = _mm_castsi128_ps(emm0);
00236   Packet4f poly_mask = _mm_castsi128_ps(emm2);
00237   sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
00238 
00239   /* The magic pass: "Extended precision modular arithmetic"
00240      x = ((x - y * DP1) - y * DP2) - y * DP3; */
00241   xmm1 = pmul(y, p4f_minus_cephes_DP1);
00242   xmm2 = pmul(y, p4f_minus_cephes_DP2);
00243   xmm3 = pmul(y, p4f_minus_cephes_DP3);
00244   x = padd(x, xmm1);
00245   x = padd(x, xmm2);
00246   x = padd(x, xmm3);
00247 
00248   /* Evaluate the first polynom  (0 <= x <= Pi/4) */
00249   y = p4f_coscof_p0;
00250   Packet4f z = _mm_mul_ps(x,x);
00251 
00252   y = pmadd(y, z, p4f_coscof_p1);
00253   y = pmadd(y, z, p4f_coscof_p2);
00254   y = pmul(y, z);
00255   y = pmul(y, z);
00256   Packet4f tmp = pmul(z, p4f_half);
00257   y = psub(y, tmp);
00258   y = padd(y, p4f_1);
00259 
00260   /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
00261 
00262   Packet4f y2 = p4f_sincof_p0;
00263   y2 = pmadd(y2, z, p4f_sincof_p1);
00264   y2 = pmadd(y2, z, p4f_sincof_p2);
00265   y2 = pmul(y2, z);
00266   y2 = pmul(y2, x);
00267   y2 = padd(y2, x);
00268 
00269   /* select the correct result from the two polynoms */
00270   y2 = _mm_and_ps(poly_mask, y2);
00271   y = _mm_andnot_ps(poly_mask, y);
00272   y = _mm_or_ps(y,y2);
00273   /* update the sign */
00274   return _mm_xor_ps(y, sign_bit);
00275 }
00276 
00277 /* almost the same as psin */
00278 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00279 Packet4f pcos<Packet4f>(const Packet4f& _x)
00280 {
00281   Packet4f x = _x;
00282   _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
00283   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
00284 
00285   _EIGEN_DECLARE_CONST_Packet4i(1, 1);
00286   _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
00287   _EIGEN_DECLARE_CONST_Packet4i(2, 2);
00288   _EIGEN_DECLARE_CONST_Packet4i(4, 4);
00289 
00290   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
00291   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
00292   _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
00293   _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
00294   _EIGEN_DECLARE_CONST_Packet4f(sincof_p1,  8.3321608736E-3f);
00295   _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
00296   _EIGEN_DECLARE_CONST_Packet4f(coscof_p0,  2.443315711809948E-005f);
00297   _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
00298   _EIGEN_DECLARE_CONST_Packet4f(coscof_p2,  4.166664568298827E-002f);
00299   _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
00300 
00301   Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
00302   Packet4i emm0, emm2;
00303 
00304   x = pabs(x);
00305 
00306   /* scale by 4/Pi */
00307   y = pmul(x, p4f_cephes_FOPI);
00308 
00309   /* get the integer part of y */
00310   emm2 = _mm_cvttps_epi32(y);
00311   /* j=(j+1) & (~1) (see the cephes sources) */
00312   emm2 = _mm_add_epi32(emm2, p4i_1);
00313   emm2 = _mm_and_si128(emm2, p4i_not1);
00314   y = _mm_cvtepi32_ps(emm2);
00315 
00316   emm2 = _mm_sub_epi32(emm2, p4i_2);
00317 
00318   /* get the swap sign flag */
00319   emm0 = _mm_andnot_si128(emm2, p4i_4);
00320   emm0 = _mm_slli_epi32(emm0, 29);
00321   /* get the polynom selection mask */
00322   emm2 = _mm_and_si128(emm2, p4i_2);
00323   emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
00324 
00325   Packet4f sign_bit = _mm_castsi128_ps(emm0);
00326   Packet4f poly_mask = _mm_castsi128_ps(emm2);
00327 
00328   /* The magic pass: "Extended precision modular arithmetic"
00329      x = ((x - y * DP1) - y * DP2) - y * DP3; */
00330   xmm1 = pmul(y, p4f_minus_cephes_DP1);
00331   xmm2 = pmul(y, p4f_minus_cephes_DP2);
00332   xmm3 = pmul(y, p4f_minus_cephes_DP3);
00333   x = padd(x, xmm1);
00334   x = padd(x, xmm2);
00335   x = padd(x, xmm3);
00336 
00337   /* Evaluate the first polynom  (0 <= x <= Pi/4) */
00338   y = p4f_coscof_p0;
00339   Packet4f z = pmul(x,x);
00340 
00341   y = pmadd(y,z,p4f_coscof_p1);
00342   y = pmadd(y,z,p4f_coscof_p2);
00343   y = pmul(y, z);
00344   y = pmul(y, z);
00345   Packet4f tmp = _mm_mul_ps(z, p4f_half);
00346   y = psub(y, tmp);
00347   y = padd(y, p4f_1);
00348 
00349   /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
00350   Packet4f y2 = p4f_sincof_p0;
00351   y2 = pmadd(y2, z, p4f_sincof_p1);
00352   y2 = pmadd(y2, z, p4f_sincof_p2);
00353   y2 = pmul(y2, z);
00354   y2 = pmadd(y2, x, x);
00355 
00356   /* select the correct result from the two polynoms */
00357   y2 = _mm_and_ps(poly_mask, y2);
00358   y  = _mm_andnot_ps(poly_mask, y);
00359   y  = _mm_or_ps(y,y2);
00360 
00361   /* update the sign */
00362   return _mm_xor_ps(y, sign_bit);
00363 }
00364 
00365 // This is based on Quake3's fast inverse square root.
00366 // For detail see here: http://www.beyond3d.com/content/articles/8/
00367 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
00368 Packet4f psqrt<Packet4f>(const Packet4f& _x)
00369 {
00370   Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
00371 
00372   /* select only the inverse sqrt of non-zero inputs */
00373   Packet4f non_zero_mask = _mm_cmpgt_ps(_x, pset1<Packet4f>(std::numeric_limits<float>::epsilon()));
00374   Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));
00375 
00376   x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
00377   return pmul(_x,x);
00378 }
00379 
00380 } // end namespace internal
00381 
00382 } // end namespace Eigen
00383 
00384 #endif // EIGEN_MATH_FUNCTIONS_SSE_H


win_eigen
Author(s): Daniel Stonier
autogenerated on Wed Sep 16 2015 07:11:13