00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_SKYLINEMATRIX_H
00011 #define EIGEN_SKYLINEMATRIX_H
00012
00013 #include "SkylineStorage.h"
00014 #include "SkylineMatrixBase.h"
00015
00016 namespace Eigen {
00017
00033 namespace internal {
00034 template<typename _Scalar, int _Options>
00035 struct traits<SkylineMatrix<_Scalar, _Options> > {
00036 typedef _Scalar Scalar;
00037 typedef Sparse StorageKind;
00038
00039 enum {
00040 RowsAtCompileTime = Dynamic,
00041 ColsAtCompileTime = Dynamic,
00042 MaxRowsAtCompileTime = Dynamic,
00043 MaxColsAtCompileTime = Dynamic,
00044 Flags = SkylineBit | _Options,
00045 CoeffReadCost = NumTraits<Scalar>::ReadCost,
00046 };
00047 };
00048 }
00049
00050 template<typename _Scalar, int _Options>
00051 class SkylineMatrix
00052 : public SkylineMatrixBase<SkylineMatrix<_Scalar, _Options> > {
00053 public:
00054 EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(SkylineMatrix)
00055 EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(SkylineMatrix, +=)
00056 EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(SkylineMatrix, -=)
00057
00058 using Base::IsRowMajor;
00059
00060 protected:
00061
00062 typedef SkylineMatrix<Scalar, (Flags&~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0) > TransposedSkylineMatrix;
00063
00064 Index m_outerSize;
00065 Index m_innerSize;
00066
00067 public:
00068 Index* m_colStartIndex;
00069 Index* m_rowStartIndex;
00070 SkylineStorage<Scalar> m_data;
00071
00072 public:
00073
00074 inline Index rows() const {
00075 return IsRowMajor ? m_outerSize : m_innerSize;
00076 }
00077
00078 inline Index cols() const {
00079 return IsRowMajor ? m_innerSize : m_outerSize;
00080 }
00081
00082 inline Index innerSize() const {
00083 return m_innerSize;
00084 }
00085
00086 inline Index outerSize() const {
00087 return m_outerSize;
00088 }
00089
00090 inline Index upperNonZeros() const {
00091 return m_data.upperSize();
00092 }
00093
00094 inline Index lowerNonZeros() const {
00095 return m_data.lowerSize();
00096 }
00097
00098 inline Index upperNonZeros(Index j) const {
00099 return m_colStartIndex[j + 1] - m_colStartIndex[j];
00100 }
00101
00102 inline Index lowerNonZeros(Index j) const {
00103 return m_rowStartIndex[j + 1] - m_rowStartIndex[j];
00104 }
00105
00106 inline const Scalar* _diagPtr() const {
00107 return &m_data.diag(0);
00108 }
00109
00110 inline Scalar* _diagPtr() {
00111 return &m_data.diag(0);
00112 }
00113
00114 inline const Scalar* _upperPtr() const {
00115 return &m_data.upper(0);
00116 }
00117
00118 inline Scalar* _upperPtr() {
00119 return &m_data.upper(0);
00120 }
00121
00122 inline const Scalar* _lowerPtr() const {
00123 return &m_data.lower(0);
00124 }
00125
00126 inline Scalar* _lowerPtr() {
00127 return &m_data.lower(0);
00128 }
00129
00130 inline const Index* _upperProfilePtr() const {
00131 return &m_data.upperProfile(0);
00132 }
00133
00134 inline Index* _upperProfilePtr() {
00135 return &m_data.upperProfile(0);
00136 }
00137
00138 inline const Index* _lowerProfilePtr() const {
00139 return &m_data.lowerProfile(0);
00140 }
00141
00142 inline Index* _lowerProfilePtr() {
00143 return &m_data.lowerProfile(0);
00144 }
00145
00146 inline Scalar coeff(Index row, Index col) const {
00147 const Index outer = IsRowMajor ? row : col;
00148 const Index inner = IsRowMajor ? col : row;
00149
00150 eigen_assert(outer < outerSize());
00151 eigen_assert(inner < innerSize());
00152
00153 if (outer == inner)
00154 return this->m_data.diag(outer);
00155
00156 if (IsRowMajor) {
00157 if (inner > outer)
00158 {
00159 const Index minOuterIndex = inner - m_data.upperProfile(inner);
00160 if (outer >= minOuterIndex)
00161 return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
00162 else
00163 return Scalar(0);
00164 }
00165 if (inner < outer)
00166 {
00167 const Index minInnerIndex = outer - m_data.lowerProfile(outer);
00168 if (inner >= minInnerIndex)
00169 return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
00170 else
00171 return Scalar(0);
00172 }
00173 return m_data.upper(m_colStartIndex[inner] + outer - inner);
00174 } else {
00175 if (outer > inner)
00176 {
00177 const Index maxOuterIndex = inner + m_data.upperProfile(inner);
00178 if (outer <= maxOuterIndex)
00179 return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
00180 else
00181 return Scalar(0);
00182 }
00183 if (outer < inner)
00184 {
00185 const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
00186
00187 if (inner <= maxInnerIndex)
00188 return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
00189 else
00190 return Scalar(0);
00191 }
00192 }
00193 }
00194
00195 inline Scalar& coeffRef(Index row, Index col) {
00196 const Index outer = IsRowMajor ? row : col;
00197 const Index inner = IsRowMajor ? col : row;
00198
00199 eigen_assert(outer < outerSize());
00200 eigen_assert(inner < innerSize());
00201
00202 if (outer == inner)
00203 return this->m_data.diag(outer);
00204
00205 if (IsRowMajor) {
00206 if (col > row)
00207 {
00208 const Index minOuterIndex = inner - m_data.upperProfile(inner);
00209 eigen_assert(outer >= minOuterIndex && "you try to acces a coeff that do not exist in the storage");
00210 return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
00211 }
00212 if (col < row)
00213 {
00214 const Index minInnerIndex = outer - m_data.lowerProfile(outer);
00215 eigen_assert(inner >= minInnerIndex && "you try to acces a coeff that do not exist in the storage");
00216 return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
00217 }
00218 } else {
00219 if (outer > inner)
00220 {
00221 const Index maxOuterIndex = inner + m_data.upperProfile(inner);
00222 eigen_assert(outer <= maxOuterIndex && "you try to acces a coeff that do not exist in the storage");
00223 return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
00224 }
00225 if (outer < inner)
00226 {
00227 const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
00228 eigen_assert(inner <= maxInnerIndex && "you try to acces a coeff that do not exist in the storage");
00229 return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
00230 }
00231 }
00232 }
00233
00234 inline Scalar coeffDiag(Index idx) const {
00235 eigen_assert(idx < outerSize());
00236 eigen_assert(idx < innerSize());
00237 return this->m_data.diag(idx);
00238 }
00239
00240 inline Scalar coeffLower(Index row, Index col) const {
00241 const Index outer = IsRowMajor ? row : col;
00242 const Index inner = IsRowMajor ? col : row;
00243
00244 eigen_assert(outer < outerSize());
00245 eigen_assert(inner < innerSize());
00246 eigen_assert(inner != outer);
00247
00248 if (IsRowMajor) {
00249 const Index minInnerIndex = outer - m_data.lowerProfile(outer);
00250 if (inner >= minInnerIndex)
00251 return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
00252 else
00253 return Scalar(0);
00254
00255 } else {
00256 const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
00257 if (inner <= maxInnerIndex)
00258 return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
00259 else
00260 return Scalar(0);
00261 }
00262 }
00263
00264 inline Scalar coeffUpper(Index row, Index col) const {
00265 const Index outer = IsRowMajor ? row : col;
00266 const Index inner = IsRowMajor ? col : row;
00267
00268 eigen_assert(outer < outerSize());
00269 eigen_assert(inner < innerSize());
00270 eigen_assert(inner != outer);
00271
00272 if (IsRowMajor) {
00273 const Index minOuterIndex = inner - m_data.upperProfile(inner);
00274 if (outer >= minOuterIndex)
00275 return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
00276 else
00277 return Scalar(0);
00278 } else {
00279 const Index maxOuterIndex = inner + m_data.upperProfile(inner);
00280 if (outer <= maxOuterIndex)
00281 return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
00282 else
00283 return Scalar(0);
00284 }
00285 }
00286
00287 inline Scalar& coeffRefDiag(Index idx) {
00288 eigen_assert(idx < outerSize());
00289 eigen_assert(idx < innerSize());
00290 return this->m_data.diag(idx);
00291 }
00292
00293 inline Scalar& coeffRefLower(Index row, Index col) {
00294 const Index outer = IsRowMajor ? row : col;
00295 const Index inner = IsRowMajor ? col : row;
00296
00297 eigen_assert(outer < outerSize());
00298 eigen_assert(inner < innerSize());
00299 eigen_assert(inner != outer);
00300
00301 if (IsRowMajor) {
00302 const Index minInnerIndex = outer - m_data.lowerProfile(outer);
00303 eigen_assert(inner >= minInnerIndex && "you try to acces a coeff that do not exist in the storage");
00304 return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
00305 } else {
00306 const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
00307 eigen_assert(inner <= maxInnerIndex && "you try to acces a coeff that do not exist in the storage");
00308 return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
00309 }
00310 }
00311
00312 inline bool coeffExistLower(Index row, Index col) {
00313 const Index outer = IsRowMajor ? row : col;
00314 const Index inner = IsRowMajor ? col : row;
00315
00316 eigen_assert(outer < outerSize());
00317 eigen_assert(inner < innerSize());
00318 eigen_assert(inner != outer);
00319
00320 if (IsRowMajor) {
00321 const Index minInnerIndex = outer - m_data.lowerProfile(outer);
00322 return inner >= minInnerIndex;
00323 } else {
00324 const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
00325 return inner <= maxInnerIndex;
00326 }
00327 }
00328
00329 inline Scalar& coeffRefUpper(Index row, Index col) {
00330 const Index outer = IsRowMajor ? row : col;
00331 const Index inner = IsRowMajor ? col : row;
00332
00333 eigen_assert(outer < outerSize());
00334 eigen_assert(inner < innerSize());
00335 eigen_assert(inner != outer);
00336
00337 if (IsRowMajor) {
00338 const Index minOuterIndex = inner - m_data.upperProfile(inner);
00339 eigen_assert(outer >= minOuterIndex && "you try to acces a coeff that do not exist in the storage");
00340 return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
00341 } else {
00342 const Index maxOuterIndex = inner + m_data.upperProfile(inner);
00343 eigen_assert(outer <= maxOuterIndex && "you try to acces a coeff that do not exist in the storage");
00344 return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
00345 }
00346 }
00347
00348 inline bool coeffExistUpper(Index row, Index col) {
00349 const Index outer = IsRowMajor ? row : col;
00350 const Index inner = IsRowMajor ? col : row;
00351
00352 eigen_assert(outer < outerSize());
00353 eigen_assert(inner < innerSize());
00354 eigen_assert(inner != outer);
00355
00356 if (IsRowMajor) {
00357 const Index minOuterIndex = inner - m_data.upperProfile(inner);
00358 return outer >= minOuterIndex;
00359 } else {
00360 const Index maxOuterIndex = inner + m_data.upperProfile(inner);
00361 return outer <= maxOuterIndex;
00362 }
00363 }
00364
00365
00366 protected:
00367
00368 public:
00369 class InnerUpperIterator;
00370 class InnerLowerIterator;
00371
00372 class OuterUpperIterator;
00373 class OuterLowerIterator;
00374
00376 inline void setZero() {
00377 m_data.clear();
00378 memset(m_colStartIndex, 0, (m_outerSize + 1) * sizeof (Index));
00379 memset(m_rowStartIndex, 0, (m_outerSize + 1) * sizeof (Index));
00380 }
00381
00383 inline Index nonZeros() const {
00384 return m_data.diagSize() + m_data.upperSize() + m_data.lowerSize();
00385 }
00386
00388 inline void reserve(Index reserveSize, Index reserveUpperSize, Index reserveLowerSize) {
00389 m_data.reserve(reserveSize, reserveUpperSize, reserveLowerSize);
00390 }
00391
00400 EIGEN_DONT_INLINE Scalar & insert(Index row, Index col) {
00401 const Index outer = IsRowMajor ? row : col;
00402 const Index inner = IsRowMajor ? col : row;
00403
00404 eigen_assert(outer < outerSize());
00405 eigen_assert(inner < innerSize());
00406
00407 if (outer == inner)
00408 return m_data.diag(col);
00409
00410 if (IsRowMajor) {
00411 if (outer < inner)
00412 {
00413 Index minOuterIndex = 0;
00414 minOuterIndex = inner - m_data.upperProfile(inner);
00415
00416 if (outer < minOuterIndex)
00417 {
00418 const Index previousProfile = m_data.upperProfile(inner);
00419
00420 m_data.upperProfile(inner) = inner - outer;
00421
00422
00423 const Index bandIncrement = m_data.upperProfile(inner) - previousProfile;
00424
00425 const Index stop = m_colStartIndex[cols()];
00426 const Index start = m_colStartIndex[inner];
00427
00428
00429 for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
00430 m_data.upper(innerIdx + bandIncrement) = m_data.upper(innerIdx);
00431 }
00432
00433 for (Index innerIdx = cols(); innerIdx > inner; innerIdx--) {
00434 m_colStartIndex[innerIdx] += bandIncrement;
00435 }
00436
00437
00438 memset(this->_upperPtr() + start, 0, (bandIncrement - 1) * sizeof (Scalar));
00439
00440 return m_data.upper(m_colStartIndex[inner]);
00441 } else {
00442 return m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
00443 }
00444 }
00445
00446 if (outer > inner)
00447 {
00448 const Index minInnerIndex = outer - m_data.lowerProfile(outer);
00449 if (inner < minInnerIndex)
00450 {
00451 const Index previousProfile = m_data.lowerProfile(outer);
00452 m_data.lowerProfile(outer) = outer - inner;
00453
00454 const Index bandIncrement = m_data.lowerProfile(outer) - previousProfile;
00455
00456 const Index stop = m_rowStartIndex[rows()];
00457 const Index start = m_rowStartIndex[outer];
00458
00459
00460 for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
00461 m_data.lower(innerIdx + bandIncrement) = m_data.lower(innerIdx);
00462 }
00463
00464 for (Index innerIdx = rows(); innerIdx > outer; innerIdx--) {
00465 m_rowStartIndex[innerIdx] += bandIncrement;
00466 }
00467
00468
00469 memset(this->_lowerPtr() + start, 0, (bandIncrement - 1) * sizeof (Scalar));
00470 return m_data.lower(m_rowStartIndex[outer]);
00471 } else {
00472 return m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
00473 }
00474 }
00475 } else {
00476 if (outer > inner)
00477 {
00478 const Index maxOuterIndex = inner + m_data.upperProfile(inner);
00479 if (outer > maxOuterIndex)
00480 {
00481 const Index previousProfile = m_data.upperProfile(inner);
00482 m_data.upperProfile(inner) = outer - inner;
00483
00484 const Index bandIncrement = m_data.upperProfile(inner) - previousProfile;
00485
00486 const Index stop = m_rowStartIndex[rows()];
00487 const Index start = m_rowStartIndex[inner + 1];
00488
00489 for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
00490 m_data.upper(innerIdx + bandIncrement) = m_data.upper(innerIdx);
00491 }
00492
00493 for (Index innerIdx = inner + 1; innerIdx < outerSize() + 1; innerIdx++) {
00494 m_rowStartIndex[innerIdx] += bandIncrement;
00495 }
00496 memset(this->_upperPtr() + m_rowStartIndex[inner] + previousProfile + 1, 0, (bandIncrement - 1) * sizeof (Scalar));
00497 return m_data.upper(m_rowStartIndex[inner] + m_data.upperProfile(inner));
00498 } else {
00499 return m_data.upper(m_rowStartIndex[inner] + (outer - inner));
00500 }
00501 }
00502
00503 if (outer < inner)
00504 {
00505 const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
00506 if (inner > maxInnerIndex)
00507 {
00508 const Index previousProfile = m_data.lowerProfile(outer);
00509 m_data.lowerProfile(outer) = inner - outer;
00510
00511 const Index bandIncrement = m_data.lowerProfile(outer) - previousProfile;
00512
00513 const Index stop = m_colStartIndex[cols()];
00514 const Index start = m_colStartIndex[outer + 1];
00515
00516 for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
00517 m_data.lower(innerIdx + bandIncrement) = m_data.lower(innerIdx);
00518 }
00519
00520 for (Index innerIdx = outer + 1; innerIdx < outerSize() + 1; innerIdx++) {
00521 m_colStartIndex[innerIdx] += bandIncrement;
00522 }
00523 memset(this->_lowerPtr() + m_colStartIndex[outer] + previousProfile + 1, 0, (bandIncrement - 1) * sizeof (Scalar));
00524 return m_data.lower(m_colStartIndex[outer] + m_data.lowerProfile(outer));
00525 } else {
00526 return m_data.lower(m_colStartIndex[outer] + (inner - outer));
00527 }
00528 }
00529 }
00530 }
00531
00534 inline void finalize() {
00535 if (IsRowMajor) {
00536 if (rows() > cols())
00537 m_data.resize(cols(), cols(), rows(), m_colStartIndex[cols()] + 1, m_rowStartIndex[rows()] + 1);
00538 else
00539 m_data.resize(rows(), cols(), rows(), m_colStartIndex[cols()] + 1, m_rowStartIndex[rows()] + 1);
00540
00541
00542
00543
00544
00545
00546
00547
00548
00549
00550
00551
00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569 } else {
00570 if (rows() > cols())
00571 m_data.resize(cols(), rows(), cols(), m_rowStartIndex[cols()] + 1, m_colStartIndex[cols()] + 1);
00572 else
00573 m_data.resize(rows(), rows(), cols(), m_rowStartIndex[rows()] + 1, m_colStartIndex[rows()] + 1);
00574 }
00575 }
00576
00577 inline void squeeze() {
00578 finalize();
00579 m_data.squeeze();
00580 }
00581
00582 void prune(Scalar reference, RealScalar epsilon = dummy_precision<RealScalar > ()) {
00583
00584 }
00585
00589 void resize(size_t rows, size_t cols) {
00590 const Index diagSize = rows > cols ? cols : rows;
00591 m_innerSize = IsRowMajor ? cols : rows;
00592
00593 eigen_assert(rows == cols && "Skyline matrix must be square matrix");
00594
00595 if (diagSize % 2) {
00596 const Index k = (diagSize - 1) / 2;
00597
00598 m_data.resize(diagSize, IsRowMajor ? cols : rows, IsRowMajor ? rows : cols,
00599 2 * k * k + k + 1,
00600 2 * k * k + k + 1);
00601
00602 } else
00603 {
00604 const Index k = diagSize / 2;
00605 m_data.resize(diagSize, IsRowMajor ? cols : rows, IsRowMajor ? rows : cols,
00606 2 * k * k - k + 1,
00607 2 * k * k - k + 1);
00608 }
00609
00610 if (m_colStartIndex && m_rowStartIndex) {
00611 delete[] m_colStartIndex;
00612 delete[] m_rowStartIndex;
00613 }
00614 m_colStartIndex = new Index [cols + 1];
00615 m_rowStartIndex = new Index [rows + 1];
00616 m_outerSize = diagSize;
00617
00618 m_data.reset();
00619 m_data.clear();
00620
00621 m_outerSize = diagSize;
00622 memset(m_colStartIndex, 0, (cols + 1) * sizeof (Index));
00623 memset(m_rowStartIndex, 0, (rows + 1) * sizeof (Index));
00624 }
00625
00626 void resizeNonZeros(Index size) {
00627 m_data.resize(size);
00628 }
00629
00630 inline SkylineMatrix()
00631 : m_outerSize(-1), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
00632 resize(0, 0);
00633 }
00634
00635 inline SkylineMatrix(size_t rows, size_t cols)
00636 : m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
00637 resize(rows, cols);
00638 }
00639
00640 template<typename OtherDerived>
00641 inline SkylineMatrix(const SkylineMatrixBase<OtherDerived>& other)
00642 : m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
00643 *this = other.derived();
00644 }
00645
00646 inline SkylineMatrix(const SkylineMatrix & other)
00647 : Base(), m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
00648 *this = other.derived();
00649 }
00650
00651 inline void swap(SkylineMatrix & other) {
00652
00653 std::swap(m_colStartIndex, other.m_colStartIndex);
00654 std::swap(m_rowStartIndex, other.m_rowStartIndex);
00655 std::swap(m_innerSize, other.m_innerSize);
00656 std::swap(m_outerSize, other.m_outerSize);
00657 m_data.swap(other.m_data);
00658 }
00659
00660 inline SkylineMatrix & operator=(const SkylineMatrix & other) {
00661 std::cout << "SkylineMatrix& operator=(const SkylineMatrix& other)\n";
00662 if (other.isRValue()) {
00663 swap(other.const_cast_derived());
00664 } else {
00665 resize(other.rows(), other.cols());
00666 memcpy(m_colStartIndex, other.m_colStartIndex, (m_outerSize + 1) * sizeof (Index));
00667 memcpy(m_rowStartIndex, other.m_rowStartIndex, (m_outerSize + 1) * sizeof (Index));
00668 m_data = other.m_data;
00669 }
00670 return *this;
00671 }
00672
00673 template<typename OtherDerived>
00674 inline SkylineMatrix & operator=(const SkylineMatrixBase<OtherDerived>& other) {
00675 const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
00676 if (needToTranspose) {
00677
00678
00679 } else {
00680
00681 return SkylineMatrixBase<SkylineMatrix>::operator=(other.derived());
00682 }
00683 }
00684
00685 friend std::ostream & operator <<(std::ostream & s, const SkylineMatrix & m) {
00686
00687 EIGEN_DBG_SKYLINE(
00688 std::cout << "upper elements : " << std::endl;
00689 for (Index i = 0; i < m.m_data.upperSize(); i++)
00690 std::cout << m.m_data.upper(i) << "\t";
00691 std::cout << std::endl;
00692 std::cout << "upper profile : " << std::endl;
00693 for (Index i = 0; i < m.m_data.upperProfileSize(); i++)
00694 std::cout << m.m_data.upperProfile(i) << "\t";
00695 std::cout << std::endl;
00696 std::cout << "lower startIdx : " << std::endl;
00697 for (Index i = 0; i < m.m_data.upperProfileSize(); i++)
00698 std::cout << (IsRowMajor ? m.m_colStartIndex[i] : m.m_rowStartIndex[i]) << "\t";
00699 std::cout << std::endl;
00700
00701
00702 std::cout << "lower elements : " << std::endl;
00703 for (Index i = 0; i < m.m_data.lowerSize(); i++)
00704 std::cout << m.m_data.lower(i) << "\t";
00705 std::cout << std::endl;
00706 std::cout << "lower profile : " << std::endl;
00707 for (Index i = 0; i < m.m_data.lowerProfileSize(); i++)
00708 std::cout << m.m_data.lowerProfile(i) << "\t";
00709 std::cout << std::endl;
00710 std::cout << "lower startIdx : " << std::endl;
00711 for (Index i = 0; i < m.m_data.lowerProfileSize(); i++)
00712 std::cout << (IsRowMajor ? m.m_rowStartIndex[i] : m.m_colStartIndex[i]) << "\t";
00713 std::cout << std::endl;
00714 );
00715 for (Index rowIdx = 0; rowIdx < m.rows(); rowIdx++) {
00716 for (Index colIdx = 0; colIdx < m.cols(); colIdx++) {
00717 s << m.coeff(rowIdx, colIdx) << "\t";
00718 }
00719 s << std::endl;
00720 }
00721 return s;
00722 }
00723
00725 inline ~SkylineMatrix() {
00726 delete[] m_colStartIndex;
00727 delete[] m_rowStartIndex;
00728 }
00729
00731 Scalar sum() const;
00732 };
00733
00734 template<typename Scalar, int _Options>
00735 class SkylineMatrix<Scalar, _Options>::InnerUpperIterator {
00736 public:
00737
00738 InnerUpperIterator(const SkylineMatrix& mat, Index outer)
00739 : m_matrix(mat), m_outer(outer),
00740 m_id(_Options == RowMajor ? mat.m_colStartIndex[outer] : mat.m_rowStartIndex[outer] + 1),
00741 m_start(m_id),
00742 m_end(_Options == RowMajor ? mat.m_colStartIndex[outer + 1] : mat.m_rowStartIndex[outer + 1] + 1) {
00743 }
00744
00745 inline InnerUpperIterator & operator++() {
00746 m_id++;
00747 return *this;
00748 }
00749
00750 inline InnerUpperIterator & operator+=(Index shift) {
00751 m_id += shift;
00752 return *this;
00753 }
00754
00755 inline Scalar value() const {
00756 return m_matrix.m_data.upper(m_id);
00757 }
00758
00759 inline Scalar* valuePtr() {
00760 return const_cast<Scalar*> (&(m_matrix.m_data.upper(m_id)));
00761 }
00762
00763 inline Scalar& valueRef() {
00764 return const_cast<Scalar&> (m_matrix.m_data.upper(m_id));
00765 }
00766
00767 inline Index index() const {
00768 return IsRowMajor ? m_outer - m_matrix.m_data.upperProfile(m_outer) + (m_id - m_start) :
00769 m_outer + (m_id - m_start) + 1;
00770 }
00771
00772 inline Index row() const {
00773 return IsRowMajor ? index() : m_outer;
00774 }
00775
00776 inline Index col() const {
00777 return IsRowMajor ? m_outer : index();
00778 }
00779
00780 inline size_t size() const {
00781 return m_matrix.m_data.upperProfile(m_outer);
00782 }
00783
00784 inline operator bool() const {
00785 return (m_id < m_end) && (m_id >= m_start);
00786 }
00787
00788 protected:
00789 const SkylineMatrix& m_matrix;
00790 const Index m_outer;
00791 Index m_id;
00792 const Index m_start;
00793 const Index m_end;
00794 };
00795
00796 template<typename Scalar, int _Options>
00797 class SkylineMatrix<Scalar, _Options>::InnerLowerIterator {
00798 public:
00799
00800 InnerLowerIterator(const SkylineMatrix& mat, Index outer)
00801 : m_matrix(mat),
00802 m_outer(outer),
00803 m_id(_Options == RowMajor ? mat.m_rowStartIndex[outer] : mat.m_colStartIndex[outer] + 1),
00804 m_start(m_id),
00805 m_end(_Options == RowMajor ? mat.m_rowStartIndex[outer + 1] : mat.m_colStartIndex[outer + 1] + 1) {
00806 }
00807
00808 inline InnerLowerIterator & operator++() {
00809 m_id++;
00810 return *this;
00811 }
00812
00813 inline InnerLowerIterator & operator+=(Index shift) {
00814 m_id += shift;
00815 return *this;
00816 }
00817
00818 inline Scalar value() const {
00819 return m_matrix.m_data.lower(m_id);
00820 }
00821
00822 inline Scalar* valuePtr() {
00823 return const_cast<Scalar*> (&(m_matrix.m_data.lower(m_id)));
00824 }
00825
00826 inline Scalar& valueRef() {
00827 return const_cast<Scalar&> (m_matrix.m_data.lower(m_id));
00828 }
00829
00830 inline Index index() const {
00831 return IsRowMajor ? m_outer - m_matrix.m_data.lowerProfile(m_outer) + (m_id - m_start) :
00832 m_outer + (m_id - m_start) + 1;
00833 ;
00834 }
00835
00836 inline Index row() const {
00837 return IsRowMajor ? m_outer : index();
00838 }
00839
00840 inline Index col() const {
00841 return IsRowMajor ? index() : m_outer;
00842 }
00843
00844 inline size_t size() const {
00845 return m_matrix.m_data.lowerProfile(m_outer);
00846 }
00847
00848 inline operator bool() const {
00849 return (m_id < m_end) && (m_id >= m_start);
00850 }
00851
00852 protected:
00853 const SkylineMatrix& m_matrix;
00854 const Index m_outer;
00855 Index m_id;
00856 const Index m_start;
00857 const Index m_end;
00858 };
00859
00860 }
00861
00862 #endif // EIGEN_SkylineMatrix_H