00001 /* 00002 * Copyright (c) 2008 Radu Bogdan Rusu <rusu -=- cs.tum.edu> 00003 * 00004 * All rights reserved. 00005 * 00006 * Redistribution and use in source and binary forms, with or without 00007 * modification, are permitted provided that the following conditions are met: 00008 * 00009 * * Redistributions of source code must retain the above copyright 00010 * notice, this list of conditions and the following disclaimer. 00011 * * Redistributions in binary form must reproduce the above copyright 00012 * notice, this list of conditions and the following disclaimer in the 00013 * documentation and/or other materials provided with the distribution. 00014 * 00015 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00016 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00017 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00018 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 00019 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00020 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 00021 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 00022 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 00023 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 00024 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00025 * POSSIBILITY OF SUCH DAMAGE. 00026 * 00027 * $Id: sac.h 28027 2009-12-21 01:08:19Z rusu $ 00028 * 00029 */ 00030 00033 #ifndef _SAMPLE_CONSENSUS_SAC_H_ 00034 #define _SAMPLE_CONSENSUS_SAC_H_ 00035 00036 #include <pcl_ros/point_cloud.h> 00037 #include <pcl/point_types.h> 00038 00039 #include <stdlib.h> 00040 #include <sac_model.h> 00041 00042 namespace sample_consensus 00043 { 00044 class SAC 00045 { 00046 public: 00047 00049 00050 SAC () 00051 { 00052 //srand ((unsigned)time (0)); // set a random seed 00053 }; 00054 00056 00059 SAC (SACModel *model) : sac_model_(model) 00060 { 00061 //srand ((unsigned)time (0)); // set a random seed 00062 }; 00063 00065 00066 virtual ~SAC () { } 00067 00069 00072 virtual inline void 00073 setThreshold (double threshold) 00074 { 00075 this->threshold_ = threshold; 00076 } 00077 00079 00082 virtual inline void 00083 setMaxIterations (int max_iterations) 00084 { 00085 this->max_iterations_ = max_iterations; 00086 } 00087 00089 00092 virtual inline void 00093 setProbability (double probability) 00094 { 00095 this->probability_ = probability; 00096 } 00097 00099 00100 virtual bool computeModel (int debug = 0) = 0; 00101 00103 00104 virtual void 00105 computeCoefficients (std::vector<double> &coefficients) 00106 { 00107 sac_model_->computeModelCoefficients (sac_model_->getBestModel ()); 00108 coefficients = sac_model_->getModelCoefficients (); 00109 } 00110 00112 00115 virtual void 00116 refineCoefficients (std::vector<double> &refined_coefficients) 00117 { 00118 sac_model_->refitModel (sac_model_->getBestInliers (), refined_coefficients); 00119 } 00120 00122 00123 virtual int removeInliers () { return (sac_model_->removeInliers ()); } 00124 00126 00127 virtual std::vector<int> 00128 getInliers () 00129 { 00130 return (sac_model_->getBestInliers ()); 00131 } 00132 00134 00137 PointCloud getPointCloud (std::vector<int> indices); 00138 00140 00145 virtual void 00146 projectPointsToModel (const std::vector<int> &indices, const std::vector<double> &model_coefficients, 00147 PointCloud &projected_points) 00148 { 00149 sac_model_->projectPoints (indices, model_coefficients, projected_points); 00150 } 00151 00152 00154 00160 std::set<int> 00161 getRandomSamples (PointCloud points, int nr_samples) 00162 { 00163 std::set<int> random_idx; 00164 for (int i = 0; i < nr_samples; i++) 00165 random_idx.insert ((int) (points.points.size () * (rand () / (RAND_MAX + 1.0)))); 00166 return (random_idx); 00167 } 00168 00170 00177 std::set<int> 00178 getRandomSamples (PointCloud points, std::vector<int> indices, int nr_samples) 00179 { 00180 std::set<int> random_idx; 00181 for (int i = 0; i < nr_samples; i++) 00182 random_idx.insert ((int) (indices.size () * (rand () / (RAND_MAX + 1.0)))); 00183 return (random_idx); 00184 } 00185 00186 protected: 00188 SACModel *sac_model_; 00189 00191 double probability_; 00192 00194 int iterations_; 00195 00197 int max_iterations_; 00198 00200 double threshold_; 00201 }; 00202 } 00203 00204 #endif