.. _trep_dlqr: Discrete LQ Problems ==================== .. currentmodule:: trep.discopt The :mod:`trep.discopt` module provides functions for solving time-varying discrete LQ problems. The Linear Quadratic Regulator (LQR) Problem -------------------------------------------- The LQR problem is to find the input for a linear system that minimizes a quadratic cost. The optimal input turns out to be a feedback law that is independent of the system's initial condition. Because of this, the LQR problem is a useful tool to automatically calculate a stabilizing feedback controller for a dynamic system. For nonlinear systems, the LQR problem is solved for the linearization of the system about a trajectory to get a locally stabilizing controller. **Problem Statement:** Given a discrete linear system Find the control input :math:`u(k)` that minimizes a quadratic cost: .. math:: V(x(k_0), u(\cdot), k_0) = \sum_{k=k_0}^{k_f-1} \left[ x^T(k)Q(k)x(k) + u^T(k)R(k)u(k) \right] + x^T(k_f) Q(k_f) x(k_f) where .. math:: \begin{align} R(k) &= R^T(k) \geq 0 \ \forall\ k \in \{k_0 \dots (k_f-1)\} \\ Q(k) &= Q^T(k) \geq 0 \ \forall\ k \in \{k_0 \dots k_f\} \\ x(k_0)&\text{ is known.} \\ x(k+1) &= A(k)x(k) + B(k)u(k) \end{align} **Solution:** The optimal control :math:`u^*(k)` and optimal cost :math:`V^*(x(k_0), k_0)` are .. math:: \begin{align} u^*(k) &= -\mathcal{K}(k) x(k) \\ V^*(x(k_0), k_0) &= x^T(k_0) P(k_0) x(k_0) \end{align} where .. math:: \mathcal{K}(k) = \Gamma^{-1}(k) B^T(k) P(k+1) A(k) \Gamma(k) = R(k) + B^T(k)P(k+1)B(k) and :math:`P(k+1)` is a symmetric time varying matrix satisfying a discrete Ricatti-like equation: .. math:: \begin{align} P(k_f) &= Q(k_f) \\ P(k) &= Q(k) + A^T(k)P(k+1)A(k) - \mathcal{K}^T(k)\Gamma(k)\mathcal{K}(k) \end{align} .. function:: solve_tv_lqr(A, B, Q, R) :param A: Linear system dynamics :type A: Sequence of N numpy arrays, shape (nX, nX) :param B: Linear system input matrix :type B: Sequence of N numpy arrays, shape (nX, nU) :param Q: Quadratic State Cost :type Q: Function Q(k) returning numpy array, shape (nX, nX) :param R: Quadratic Input Cost :type R: Function R(k) returning numpy array, shape (nU, nU) :rtype: named tuple (K, P) This function solve the time-varying discrete LQR problem for the linear system *A*, *B* and costs *Q* and *R*. *A* is a sequence of the linear system dynamics, ``A[k]``. *B* is a sequence of the linear system's input matrix, ``B[k]``. *Q* is a function ``Q(k)`` that returns the state cost matrix at time *k*. For example, if :math:`Q(k) = \mathcal{I}`:: Q = lambda k: numpy.eye(nX) *R* is a function ``Q(k)`` that returns the state cost matrix at time *k*. For example, if the cost matrices are stored in an array *r_costs*:: R = lambda k: r_costs[k] The function returns the optimal feedback law :math:`\mathcal{K(k)}` and the solution to the discrete Ricatti equation at k=0, :math:`P(0)`. *K* is a sequence of N numpy arrays of shape (nU,nX). *P* is a single (nX, nX) numpy array. The Linear Quadratic (LQ) Problem --------------------------------- The LQ problem is to find the input for a linear system that minimizes a cost with linear and quadratic terms. In trep, the LQ problem is a sub-problem for discrete trajectory optimization that is used to calculate the descent direction at each iteration. **Problem Statement:** Find the control input :math:`u(k)` that minimizes the cost: .. math:: V(x(k_0), u(\cdot), k_0) = \sum_{k=k_0}^{k_f-1} \Bigg[ 2 \begin{bmatrix} q(k) \\ r(k) \end{bmatrix}^T \begin{bmatrix} x(k) \\ u(k) \end{bmatrix} + \begin{bmatrix} x(k) \\ u(k) \end{bmatrix}^T \begin{bmatrix} Q(k) & S(k) \\ S^T(k) & R(k) \end{bmatrix} \begin{bmatrix} x(k) \\ u(k) \end{bmatrix} \Bigg] \\ + 2 q^T(k_f) x(k_f) + x^T(k_f)Q(k_f)x(k_f) where .. math:: \begin{align*} R(k) &= R^T(k) > 0 \ \forall\ k \in \{k_0 \dots (k_f-1)\} \\ Q(k) &= Q^T(k) \geq 0 \ \forall\ k \in \{k_0 \dots k_f\} \\ x(k_0)&\text{ is known.} \\ x(k+1) &= A(k)x(k) + B(k)u(k) \end{align*} **Solution:** The optimal control :math:`u^*(k)` and optimal cost :math:`V^*(x(k_0), k_0)` are: .. math:: \begin{align*} u^*(k) &= -\mathcal{K}(k) x(k) - C(k) \\ V^*(x(k_0), k_0) &= x^T(k_0) P(k_0) x(k_0) + 2 b^T(k_0) x(k_0) + c(k_0) \end{align*} where: .. math:: K(k) = \Gamma^{-1}(k) \left[B^T(k)P(k+1)A(k) + S^T(k)\right] C(k) = \Gamma^{-1}(k) \left[B^T(k)b(k+1) + r(k) \right] \Gamma(k) = \left[ R(k) + B^T(k)P(k+1)B(k) \right] and :math:`P(k)`, :math:`b(k)`, and :math:`c(k)` are solutions to backwards difference equations: .. math:: \begin{align*} P(k_f) &= Q(k_f) \\ P(k) &= Q(k) + A^T(k)P(k+1)A(k) - \mathcal{K}^T(k)\Gamma(k)\mathcal{K}(k) \end{align*} \begin{align*} b(k_f) &= q(k_f) \\ b(k) &= \left[A^T(k) - \mathcal{K}^T(k)B^T(k) \right]b(k+1) + q(k) - \mathcal{K}^T(k)r(k) \end{align*} \begin{align*} c(k_f) &= 0 \\ c(k) &= c(k+1) - C(k)^T\Gamma(k) C(k) \end{align*} .. function:: solve_tv_lq(A, B, q, r, Q, S, R) :param A: Linear system dynamics :type A: Sequence of N numpy arrays, shape (nX, nX) :param B: Linear system input matrix :type B: Sequence of N numpy arrays, shape (nX, nU) :param q: Linear State Cost :type q: Sequence of N numpy arrays, shape (nX) :param r: Linear Input Cost :type r: Sequence of N numpy arrays, shape (nU) :param Q: Quadratic State Cost :type Q: Function Q(k) returning numpy array, shape (nX, nX) :param S: Quadratic Cross Term Cost :type S: Function S(k) returning numpy array, shape (nX, nU) :param R: Quadratic Input Cost :type R: Function R(k) returning numpy array, shape (nU, nU) :rtype: named tuple (K, C, P, b) This function solve the time-varying discrete LQ problem for the linear system *A*, *B*. *A[k]* is a sequence of the linear system dynamics, :math:`A(k)`. *B[k]* is a sequence of the linear system's input matrix, :math:`B(k)`. *q[k]* is a sequence of the linear state cost, :math:`q(k)`. *r[k]* is a sequence of the linear input cost, :math:`r(k)`. *Q(k)* is a function that returns the quadratic state cost matrix *at time k*. For example, if :math:`Q(k) = \mathcal{I}`:: Q = lambda k: numpy.eye(nX) *S(k)* is a function that returns the quadratic cross term cost *matrix at time k*. *R(k)* is a function that returns the state cost matrix at time *k*. For example, if the cost matrices are stored in an array *r_costs*:: R = lambda k: r_costs[k] The function returns the optimal feedback law :math:`\mathcal{K(k)}`, the affine input term :math:`C(k)`, and the last solution to two of the difference equations, :math:`P(0)` and :math:`b(0)`. *K* is a sequence of N numpy arrays of shape (nU,nX). *C* is a sequence of N numpy arrays of shape (nU). *P* is a single (nX, nX) numpy array. *b* is a single (nX) numpy array.