statistical_outlier_removal_worker.cpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2012, Willow Garage, Inc.
00006  *  All rights reserved.
00007  *
00008  *  Redistribution and use in source and binary forms, with or without
00009  *  modification, are permitted provided that the following conditions
00010  *  are met:
00011  *
00012  *   * Redistributions of source code must retain the above copyright
00013  *     notice, this list of conditions and the following disclaimer.
00014  *   * Redistributions in binary form must reproduce the above
00015  *     copyright notice, this list of conditions and the following
00016  *     disclaimer in the documentation and/or other materials provided
00017  *     with the distribution.
00018  *   * Neither the name of Willow Garage, Inc. nor the names of its
00019  *     contributors may be used to endorse or promote products derived
00020  *     from this software without specific prior written permission.
00021  *
00022  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00023  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00024  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00025  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00026  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00027  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00028  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00029  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00030  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00032  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00033  *  POSSIBILITY OF SUCH DAMAGE.
00034  *
00035  */
00036 
00037 #include <pcl/apps/modeler/statistical_outlier_removal_worker.h>
00038 #include <pcl/apps/modeler/parameter.h>
00039 #include <pcl/apps/modeler/parameter_dialog.h>
00040 #include <pcl/apps/modeler/cloud_mesh.h>
00041 #include <pcl/apps/modeler/cloud_mesh_item.h>
00042 #include <pcl/filters/statistical_outlier_removal.h>
00043 
00044 
00046 pcl::modeler::StatisticalOutlierRemovalWorker::StatisticalOutlierRemovalWorker(const QList<CloudMeshItem*>& cloud_mesh_items, QWidget* parent) :
00047   AbstractWorker(cloud_mesh_items, parent),
00048   mean_k_(NULL), stddev_mul_thresh_(NULL)
00049 {
00050 }
00051 
00053 pcl::modeler::StatisticalOutlierRemovalWorker::~StatisticalOutlierRemovalWorker(void)
00054 {
00055   delete mean_k_;
00056   delete stddev_mul_thresh_;
00057 }
00058 
00060 void
00061 pcl::modeler::StatisticalOutlierRemovalWorker::initParameters(CloudMeshItem *)
00062 {
00063   return;
00064 }
00065 
00067 void
00068 pcl::modeler::StatisticalOutlierRemovalWorker::setupParameters()
00069 {
00070   mean_k_ = new IntParameter("Mean K", "The number of nearest neighbors to use for mean distance estimation", 8, 1, 1024, 1);
00071   stddev_mul_thresh_ = new DoubleParameter("Standard Deviation Multiplier", "The distance threshold will be equal to: mean + stddev_mult * stddev. Points will be classified as inlier or outlier if their average neighbor distance is below or above this threshold respectively.", 1.0, 0.1, 10, 0.1);
00072 
00073   parameter_dialog_->addParameter(mean_k_);
00074   parameter_dialog_->addParameter(stddev_mul_thresh_);
00075 
00076   return;
00077 }
00078 
00080 void
00081 pcl::modeler::StatisticalOutlierRemovalWorker::processImpl(CloudMeshItem* cloud_mesh_item)
00082 {
00083   pcl::StatisticalOutlierRemoval<pcl::PointSurfel> sor;
00084   sor.setInputCloud(cloud_mesh_item->getCloudMesh()->getCloud());
00085   sor.setMeanK(*mean_k_);
00086   sor.setStddevMulThresh(*stddev_mul_thresh_);
00087 
00088   CloudMesh::PointCloudPtr cloud(new CloudMesh::PointCloud());
00089   sor.filter(*cloud);
00090 
00091   cloud_mesh_item->getCloudMesh()->getCloud() = cloud;
00092 
00093   emitDataUpdated(cloud_mesh_item);
00094 
00095   return;
00096 }


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:33:54