tgVector3.cpp
Go to the documentation of this file.
00001 //CPP:
00002 //                      Title:                  class tgVector3
00003 //                      File:                           tgVector3.cpp
00004 //
00005 //                      Function:               3D Vector with all necessary operations 
00006 //
00007 //                      Author:                 Thomas Moerwald
00008 //                      Date:                           10.01.2007
00009 // ----------------------------------------------------------------------------
00010 #include <blort/TomGine/tgVector3.h>
00011 #include <blort/TomGine/tgMatrix3.h>
00012 
00013 using namespace TomGine;
00014 
00015 tgVector3::tgVector3()
00016 :x(0), y(0), z(0)
00017 {
00018 //      tgVector3(0.0f);
00019 }
00020 
00021 tgVector3::tgVector3(float all)
00022 :x(all), y(all), z(all)
00023 {
00024         //tgVector3(all,all,all);
00025         
00026 }
00027 
00028 tgVector3::tgVector3(float xn, float yn, float zn)
00029 {
00030         x = xn; y = yn; z = zn;
00031 }
00032 
00033 tgVector3 tgVector3::operator=(tgVector3 v){
00034         x = v.x;
00035         y = v.y;
00036         z = v.z;
00037         return (*this);
00038 }
00039 
00040 tgVector3 tgVector3::operator+(tgVector3 v)
00041 {
00042         return tgVector3(x+v.x, y+v.y, z+v.z);
00043 }
00044 
00045 tgVector3 tgVector3::operator-(tgVector3 v)
00046 {
00047         return tgVector3(x-v.x, y-v.y, z-v.z);
00048 }
00049 
00050 tgVector3 tgVector3::operator*(tgVector3 v)
00051 {
00052         return tgVector3(x*v.x, y*v.y, z*v.z);
00053 }
00054 
00055 tgVector3 tgVector3::operator*(float m)
00056 {
00057         return tgVector3(x*m, y*m, z*m);
00058 }
00059 
00060 tgVector3 tgVector3::operator/(float m)
00061 {
00062         return tgVector3(x/m, y/m, z/m);
00063 }
00064 
00065 tgVector3 tgVector3::cross(tgVector3 v)
00066 {
00067         return tgVector3(       y*v.z - z*v.y, 
00068                                         z*v.x - x*v.z,
00069                                         x*v.y - y*v.x);
00070 }
00071 
00072 tgVector3 tgVector3::cross(tgVector3 v1, tgVector3 v2)
00073 {
00074         return tgVector3(       v1.y*v2.z - v1.z*v2.y, 
00075                                         v1.z*v2.x - v1.x*v2.z,
00076                                         v1.x*v2.y - v1.y*v2.x);
00077 }
00078 
00079 float tgVector3::dot(tgVector3 v)
00080 {
00081         return (x*v.x + y*v.y + z*v.z);
00082 }
00083 
00084 void tgVector3::normalize()
00085 {
00086         float s = sqrt(x*x + y*y + z*z);
00087         if(s != 0.0f)
00088         {
00089                 x /= s;
00090                 y /= s;
00091                 z /= s;
00092         }
00093 }
00094 
00095 float tgVector3::length()
00096 {
00097         return sqrt(x*x + y*y + z*z);
00098 }
00099 
00100 void tgVector3::setLength(float l)
00101 {
00102         normalize();
00103         x *= l;
00104         y *= l;
00105         z *= l; 
00106 }
00107 
00108 void tgVector3::rotateX(float fAngle)
00109 {
00110         float tz = z;
00111         float ty = y;
00112         y = ty * cos(fAngle) - tz * sin(fAngle);
00113         z = ty * sin(fAngle) + tz * cos(fAngle);
00114 }
00115 
00116 void tgVector3::rotateY(float fAngle)
00117 {       
00118         float tz = z;
00119         float tx = x;
00120         z = tz * cos(fAngle) - tx * sin(fAngle);
00121         x = tz * sin(fAngle) + tx * cos(fAngle);
00122 }
00123 
00124 void tgVector3::rotateZ(float fAngle)
00125 {
00126         float tx = x;
00127         float ty = y;
00128         x = tx * cos(fAngle) - ty * sin(fAngle);
00129         y = tx * sin(fAngle) + ty * cos(fAngle);
00130 }
00131 
00132 void tgVector3::rotate(float alpha, tgVector3 r) {
00133         
00134         tgVector3 v,s,t,n;
00135         tgMatrix3 M,Mt,Rx,X;
00136         
00137         if(alpha != 0){
00138 
00139                 r.normalize();
00140                 s = r.cross(tgVector3(1,0,0));
00141                 
00142                 if(s.length() < 0.001f)
00143                         s = r.cross(tgVector3(0,1,0));
00144                 
00145                 s.normalize();
00146                 t = r.cross(s);
00147                 
00148                 Mt = tgMatrix3(r,s,t);
00149                 M = tgMatrix3(Mt);
00150                 M.transpose();  
00151                 
00152                 Rx = tgMatrix3( 1.0f,   0.0f,   0.0f,
00153                                                                                         0.0f,   cos(alpha),     -sin(alpha),
00154                                                                                         0.0f,   sin(alpha),     cos(alpha));
00155                                                 
00156                 X=Mt*Rx*M;
00157 
00158                 v = tgVector3(x,y,z);
00159                 n = X*v;
00160                 
00161                 x = n.x;
00162                 y = n.y;
00163                 z = n.z;
00164         }
00165 }
00166 
00167 float Angle(tgVector3 a, tgVector3 b)
00168 {
00169         float d = a.dot(b)/(a.length() * b.length());
00170         return acos(d);
00171 }
00172 
00173 
00174 


blort
Author(s): Thomas Mörwald , Michael Zillich , Andreas Richtsfeld , Johann Prankl , Markus Vincze , Bence Magyar
autogenerated on Wed Aug 26 2015 15:24:12