three_dimensional_example.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00027 
00035 #include <acado_optimal_control.hpp>
00036 #include <acado_gnuplot.hpp>
00037 
00038 
00039 int main( ){
00040 
00041     USING_NAMESPACE_ACADO
00042 
00043     // INTRODUCE THE VARIABLES:
00044     // -------------------------
00045     Parameter x, y, z;
00046 
00047     // DEFINE AN OPTIMAL CONTROL PROBLEM:
00048     // ----------------------------------
00049     NLP nlp;
00050     nlp.minimize (  x*y + y*z               );
00051     nlp.subjectTo(  x*x - y*y + z*z >= 2.0  );
00052     nlp.subjectTo(  x*x + y*y + z*z <= 10.0 );
00053     nlp.subjectTo(  x >= 0.01 );
00054     nlp.subjectTo(  y >= 0.01 );
00055     nlp.subjectTo(  z >= 0.01 );
00056 
00057     // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE NLP:
00058     // ---------------------------------------------------
00059     OptimizationAlgorithm algorithm(nlp);
00060     algorithm.solve();
00061 
00062     return 0;
00063 }
00064 
00065 
00066 


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 12:01:10