00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00035 #include <acado_optimal_control.hpp> 00036 #include <acado_gnuplot.hpp> 00037 00038 00039 int main( ){ 00040 00041 USING_NAMESPACE_ACADO 00042 00043 // INTRODUCE THE VARIABLES: 00044 // ------------------------- 00045 Parameter a, b; 00046 00047 // DEFINE AN OPTIMAL CONTROL PROBLEM: 00048 // ---------------------------------- 00049 NLP nlp; 00050 nlp.minimize ( a*a + b*b ); 00051 nlp.subjectTo( 0.08 <= a ); 00052 nlp.subjectTo( 0.1 <= a + b + 0.3*a*a ); 00053 00054 00055 // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE NLP: 00056 // --------------------------------------------------- 00057 OptimizationAlgorithm algorithm(nlp); 00058 algorithm.solve(); 00059 00060 00061 // PRINT OPTIMAL SOLUTION: 00062 // ----------------------- 00063 DVector results; 00064 algorithm.getParameters( results ); 00065 results.print( "optimal solution" ); 00066 00067 return 0; 00068 } 00069 00070 00071