00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00034 #include <acado_integrators.hpp> 00035 00036 using namespace std; 00037 00038 USING_NAMESPACE_ACADO 00039 00040 /* >>> start tutorial code >>> */ 00041 int main() 00042 { 00043 USING_NAMESPACE_ACADO 00044 00045 // DEFINE VALRIABLES: 00046 // --------------------------- 00047 DifferentialState x,y; 00048 00049 Function f; 00050 00051 f << (x+1)*(y+1) + y*x*y;//pow(y,3); 00052 f << x; 00053 f << y; 00054 00055 // EVALUATE THE FUNCTION f: 00056 // ------------------------ 00057 EvaluationPoint z(f); 00058 00059 DVector diffState(2); 00060 00061 diffState(0) = 1.0; 00062 diffState(1) = 2.0; 00063 00064 z.setX( diffState ); 00065 00066 DVector ff = f(z); 00067 00068 ff.print(); 00069 00070 // COMPUTE THE BACKWARD DERIVATIVE: 00071 // -------------------------------- 00072 00073 DVector seed(f.getDim()); 00074 00075 seed(0) = 1.0; 00076 seed(1) = 0.0; 00077 seed(2) = 0.0; 00078 00079 EvaluationPoint df(f); 00080 00081 f.AD_backward( seed, df ); 00082 00083 df.getX().print(cout, "df"); 00084 00085 return 0; 00086 } 00087 /* <<< end tutorial code <<< */ 00088 00089