Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011 #ifndef EIGEN_HESSENBERGDECOMPOSITION_H
00012 #define EIGEN_HESSENBERGDECOMPOSITION_H
00013
00014 namespace Eigen {
00015
00016 namespace internal {
00017
00018 template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType;
00019 template<typename MatrixType>
00020 struct traits<HessenbergDecompositionMatrixHReturnType<MatrixType> >
00021 {
00022 typedef MatrixType ReturnType;
00023 };
00024
00025 }
00026
00057 template<typename _MatrixType> class HessenbergDecomposition
00058 {
00059 public:
00060
00062 typedef _MatrixType MatrixType;
00063
00064 enum {
00065 Size = MatrixType::RowsAtCompileTime,
00066 SizeMinusOne = Size == Dynamic ? Dynamic : Size - 1,
00067 Options = MatrixType::Options,
00068 MaxSize = MatrixType::MaxRowsAtCompileTime,
00069 MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1
00070 };
00071
00073 typedef typename MatrixType::Scalar Scalar;
00074 typedef typename MatrixType::Index Index;
00075
00082 typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
00083
00085 typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
00086
00087 typedef internal::HessenbergDecompositionMatrixHReturnType<MatrixType> MatrixHReturnType;
00088
00100 HessenbergDecomposition(Index size = Size==Dynamic ? 2 : Size)
00101 : m_matrix(size,size),
00102 m_temp(size),
00103 m_isInitialized(false)
00104 {
00105 if(size>1)
00106 m_hCoeffs.resize(size-1);
00107 }
00108
00118 HessenbergDecomposition(const MatrixType& matrix)
00119 : m_matrix(matrix),
00120 m_temp(matrix.rows()),
00121 m_isInitialized(false)
00122 {
00123 if(matrix.rows()<2)
00124 {
00125 m_isInitialized = true;
00126 return;
00127 }
00128 m_hCoeffs.resize(matrix.rows()-1,1);
00129 _compute(m_matrix, m_hCoeffs, m_temp);
00130 m_isInitialized = true;
00131 }
00132
00150 HessenbergDecomposition& compute(const MatrixType& matrix)
00151 {
00152 m_matrix = matrix;
00153 if(matrix.rows()<2)
00154 {
00155 m_isInitialized = true;
00156 return *this;
00157 }
00158 m_hCoeffs.resize(matrix.rows()-1,1);
00159 _compute(m_matrix, m_hCoeffs, m_temp);
00160 m_isInitialized = true;
00161 return *this;
00162 }
00163
00177 const CoeffVectorType& householderCoefficients() const
00178 {
00179 eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
00180 return m_hCoeffs;
00181 }
00182
00212 const MatrixType& packedMatrix() const
00213 {
00214 eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
00215 return m_matrix;
00216 }
00217
00232 HouseholderSequenceType matrixQ() const
00233 {
00234 eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
00235 return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
00236 .setLength(m_matrix.rows() - 1)
00237 .setShift(1);
00238 }
00239
00260 MatrixHReturnType matrixH() const
00261 {
00262 eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
00263 return MatrixHReturnType(*this);
00264 }
00265
00266 private:
00267
00268 typedef Matrix<Scalar, 1, Size, Options | RowMajor, 1, MaxSize> VectorType;
00269 typedef typename NumTraits<Scalar>::Real RealScalar;
00270 static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp);
00271
00272 protected:
00273 MatrixType m_matrix;
00274 CoeffVectorType m_hCoeffs;
00275 VectorType m_temp;
00276 bool m_isInitialized;
00277 };
00278
00291 template<typename MatrixType>
00292 void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp)
00293 {
00294 eigen_assert(matA.rows()==matA.cols());
00295 Index n = matA.rows();
00296 temp.resize(n);
00297 for (Index i = 0; i<n-1; ++i)
00298 {
00299
00300 Index remainingSize = n-i-1;
00301 RealScalar beta;
00302 Scalar h;
00303 matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
00304 matA.col(i).coeffRef(i+1) = beta;
00305 hCoeffs.coeffRef(i) = h;
00306
00307
00308
00309
00310
00311 matA.bottomRightCorner(remainingSize, remainingSize)
00312 .applyHouseholderOnTheLeft(matA.col(i).tail(remainingSize-1), h, &temp.coeffRef(0));
00313
00314
00315 matA.rightCols(remainingSize)
00316 .applyHouseholderOnTheRight(matA.col(i).tail(remainingSize-1).conjugate(), numext::conj(h), &temp.coeffRef(0));
00317 }
00318 }
00319
00320 namespace internal {
00321
00337 template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType
00338 : public ReturnByValue<HessenbergDecompositionMatrixHReturnType<MatrixType> >
00339 {
00340 typedef typename MatrixType::Index Index;
00341 public:
00346 HessenbergDecompositionMatrixHReturnType(const HessenbergDecomposition<MatrixType>& hess) : m_hess(hess) { }
00347
00353 template <typename ResultType>
00354 inline void evalTo(ResultType& result) const
00355 {
00356 result = m_hess.packedMatrix();
00357 Index n = result.rows();
00358 if (n>2)
00359 result.bottomLeftCorner(n-2, n-2).template triangularView<Lower>().setZero();
00360 }
00361
00362 Index rows() const { return m_hess.packedMatrix().rows(); }
00363 Index cols() const { return m_hess.packedMatrix().cols(); }
00364
00365 protected:
00366 const HessenbergDecomposition<MatrixType>& m_hess;
00367 };
00368
00369 }
00370
00371 }
00372
00373 #endif // EIGEN_HESSENBERGDECOMPOSITION_H