00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_LLT_H
00011 #define EIGEN_LLT_H
00012
00013 namespace Eigen {
00014
00015 namespace internal{
00016 template<typename MatrixType, int UpLo> struct LLT_Traits;
00017 }
00018
00046
00047
00048
00049
00050 template<typename _MatrixType, int _UpLo> class LLT
00051 {
00052 public:
00053 typedef _MatrixType MatrixType;
00054 enum {
00055 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00056 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00057 Options = MatrixType::Options,
00058 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
00059 };
00060 typedef typename MatrixType::Scalar Scalar;
00061 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
00062 typedef typename MatrixType::Index Index;
00063
00064 enum {
00065 PacketSize = internal::packet_traits<Scalar>::size,
00066 AlignmentMask = int(PacketSize)-1,
00067 UpLo = _UpLo
00068 };
00069
00070 typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
00071
00078 LLT() : m_matrix(), m_isInitialized(false) {}
00079
00086 LLT(Index size) : m_matrix(size, size),
00087 m_isInitialized(false) {}
00088
00089 LLT(const MatrixType& matrix)
00090 : m_matrix(matrix.rows(), matrix.cols()),
00091 m_isInitialized(false)
00092 {
00093 compute(matrix);
00094 }
00095
00097 inline typename Traits::MatrixU matrixU() const
00098 {
00099 eigen_assert(m_isInitialized && "LLT is not initialized.");
00100 return Traits::getU(m_matrix);
00101 }
00102
00104 inline typename Traits::MatrixL matrixL() const
00105 {
00106 eigen_assert(m_isInitialized && "LLT is not initialized.");
00107 return Traits::getL(m_matrix);
00108 }
00109
00120 template<typename Rhs>
00121 inline const internal::solve_retval<LLT, Rhs>
00122 solve(const MatrixBase<Rhs>& b) const
00123 {
00124 eigen_assert(m_isInitialized && "LLT is not initialized.");
00125 eigen_assert(m_matrix.rows()==b.rows()
00126 && "LLT::solve(): invalid number of rows of the right hand side matrix b");
00127 return internal::solve_retval<LLT, Rhs>(*this, b.derived());
00128 }
00129
00130 #ifdef EIGEN2_SUPPORT
00131 template<typename OtherDerived, typename ResultType>
00132 bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
00133 {
00134 *result = this->solve(b);
00135 return true;
00136 }
00137
00138 bool isPositiveDefinite() const { return true; }
00139 #endif
00140
00141 template<typename Derived>
00142 void solveInPlace(MatrixBase<Derived> &bAndX) const;
00143
00144 LLT& compute(const MatrixType& matrix);
00145
00150 inline const MatrixType& matrixLLT() const
00151 {
00152 eigen_assert(m_isInitialized && "LLT is not initialized.");
00153 return m_matrix;
00154 }
00155
00156 MatrixType reconstructedMatrix() const;
00157
00158
00164 ComputationInfo info() const
00165 {
00166 eigen_assert(m_isInitialized && "LLT is not initialized.");
00167 return m_info;
00168 }
00169
00170 inline Index rows() const { return m_matrix.rows(); }
00171 inline Index cols() const { return m_matrix.cols(); }
00172
00173 template<typename VectorType>
00174 LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
00175
00176 protected:
00181 MatrixType m_matrix;
00182 bool m_isInitialized;
00183 ComputationInfo m_info;
00184 };
00185
00186 namespace internal {
00187
00188 template<typename Scalar, int UpLo> struct llt_inplace;
00189
00190 template<typename MatrixType, typename VectorType>
00191 static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
00192 {
00193 typedef typename MatrixType::Scalar Scalar;
00194 typedef typename MatrixType::RealScalar RealScalar;
00195 typedef typename MatrixType::Index Index;
00196 typedef typename MatrixType::ColXpr ColXpr;
00197 typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
00198 typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
00199 typedef Matrix<Scalar,Dynamic,1> TempVectorType;
00200 typedef typename TempVectorType::SegmentReturnType TempVecSegment;
00201
00202 int n = mat.cols();
00203 eigen_assert(mat.rows()==n && vec.size()==n);
00204
00205 TempVectorType temp;
00206
00207 if(sigma>0)
00208 {
00209
00210
00211
00212 temp = sqrt(sigma) * vec;
00213
00214 for(int i=0; i<n; ++i)
00215 {
00216 JacobiRotation<Scalar> g;
00217 g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
00218
00219 int rs = n-i-1;
00220 if(rs>0)
00221 {
00222 ColXprSegment x(mat.col(i).tail(rs));
00223 TempVecSegment y(temp.tail(rs));
00224 apply_rotation_in_the_plane(x, y, g);
00225 }
00226 }
00227 }
00228 else
00229 {
00230 temp = vec;
00231 RealScalar beta = 1;
00232 for(int j=0; j<n; ++j)
00233 {
00234 RealScalar Ljj = real(mat.coeff(j,j));
00235 RealScalar dj = abs2(Ljj);
00236 Scalar wj = temp.coeff(j);
00237 RealScalar swj2 = sigma*abs2(wj);
00238 RealScalar gamma = dj*beta + swj2;
00239
00240 RealScalar x = dj + swj2/beta;
00241 if (x<=RealScalar(0))
00242 return j;
00243 RealScalar nLjj = sqrt(x);
00244 mat.coeffRef(j,j) = nLjj;
00245 beta += swj2/dj;
00246
00247
00248 Index rs = n-j-1;
00249 if(rs)
00250 {
00251 temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
00252 if(gamma != 0)
00253 mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*conj(wj)/gamma)*temp.tail(rs);
00254 }
00255 }
00256 }
00257 return -1;
00258 }
00259
00260 template<typename Scalar> struct llt_inplace<Scalar, Lower>
00261 {
00262 typedef typename NumTraits<Scalar>::Real RealScalar;
00263 template<typename MatrixType>
00264 static typename MatrixType::Index unblocked(MatrixType& mat)
00265 {
00266 typedef typename MatrixType::Index Index;
00267
00268 eigen_assert(mat.rows()==mat.cols());
00269 const Index size = mat.rows();
00270 for(Index k = 0; k < size; ++k)
00271 {
00272 Index rs = size-k-1;
00273
00274 Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
00275 Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
00276 Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
00277
00278 RealScalar x = real(mat.coeff(k,k));
00279 if (k>0) x -= A10.squaredNorm();
00280 if (x<=RealScalar(0))
00281 return k;
00282 mat.coeffRef(k,k) = x = sqrt(x);
00283 if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
00284 if (rs>0) A21 *= RealScalar(1)/x;
00285 }
00286 return -1;
00287 }
00288
00289 template<typename MatrixType>
00290 static typename MatrixType::Index blocked(MatrixType& m)
00291 {
00292 typedef typename MatrixType::Index Index;
00293 eigen_assert(m.rows()==m.cols());
00294 Index size = m.rows();
00295 if(size<32)
00296 return unblocked(m);
00297
00298 Index blockSize = size/8;
00299 blockSize = (blockSize/16)*16;
00300 blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
00301
00302 for (Index k=0; k<size; k+=blockSize)
00303 {
00304
00305
00306
00307
00308 Index bs = (std::min)(blockSize, size-k);
00309 Index rs = size - k - bs;
00310 Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
00311 Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
00312 Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
00313
00314 Index ret;
00315 if((ret=unblocked(A11))>=0) return k+ret;
00316 if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
00317 if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1);
00318 }
00319 return -1;
00320 }
00321
00322 template<typename MatrixType, typename VectorType>
00323 static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
00324 {
00325 return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
00326 }
00327 };
00328
00329 template<typename Scalar> struct llt_inplace<Scalar, Upper>
00330 {
00331 typedef typename NumTraits<Scalar>::Real RealScalar;
00332
00333 template<typename MatrixType>
00334 static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat)
00335 {
00336 Transpose<MatrixType> matt(mat);
00337 return llt_inplace<Scalar, Lower>::unblocked(matt);
00338 }
00339 template<typename MatrixType>
00340 static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat)
00341 {
00342 Transpose<MatrixType> matt(mat);
00343 return llt_inplace<Scalar, Lower>::blocked(matt);
00344 }
00345 template<typename MatrixType, typename VectorType>
00346 static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
00347 {
00348 Transpose<MatrixType> matt(mat);
00349 return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
00350 }
00351 };
00352
00353 template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
00354 {
00355 typedef const TriangularView<const MatrixType, Lower> MatrixL;
00356 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
00357 static inline MatrixL getL(const MatrixType& m) { return m; }
00358 static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
00359 static bool inplace_decomposition(MatrixType& m)
00360 { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
00361 };
00362
00363 template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
00364 {
00365 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
00366 typedef const TriangularView<const MatrixType, Upper> MatrixU;
00367 static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
00368 static inline MatrixU getU(const MatrixType& m) { return m; }
00369 static bool inplace_decomposition(MatrixType& m)
00370 { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
00371 };
00372
00373 }
00374
00382 template<typename MatrixType, int _UpLo>
00383 LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
00384 {
00385 eigen_assert(a.rows()==a.cols());
00386 const Index size = a.rows();
00387 m_matrix.resize(size, size);
00388 m_matrix = a;
00389
00390 m_isInitialized = true;
00391 bool ok = Traits::inplace_decomposition(m_matrix);
00392 m_info = ok ? Success : NumericalIssue;
00393
00394 return *this;
00395 }
00396
00402 template<typename _MatrixType, int _UpLo>
00403 template<typename VectorType>
00404 LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
00405 {
00406 EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
00407 eigen_assert(v.size()==m_matrix.cols());
00408 eigen_assert(m_isInitialized);
00409 if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
00410 m_info = NumericalIssue;
00411 else
00412 m_info = Success;
00413
00414 return *this;
00415 }
00416
00417 namespace internal {
00418 template<typename _MatrixType, int UpLo, typename Rhs>
00419 struct solve_retval<LLT<_MatrixType, UpLo>, Rhs>
00420 : solve_retval_base<LLT<_MatrixType, UpLo>, Rhs>
00421 {
00422 typedef LLT<_MatrixType,UpLo> LLTType;
00423 EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs)
00424
00425 template<typename Dest> void evalTo(Dest& dst) const
00426 {
00427 dst = rhs();
00428 dec().solveInPlace(dst);
00429 }
00430 };
00431 }
00432
00446 template<typename MatrixType, int _UpLo>
00447 template<typename Derived>
00448 void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
00449 {
00450 eigen_assert(m_isInitialized && "LLT is not initialized.");
00451 eigen_assert(m_matrix.rows()==bAndX.rows());
00452 matrixL().solveInPlace(bAndX);
00453 matrixU().solveInPlace(bAndX);
00454 }
00455
00459 template<typename MatrixType, int _UpLo>
00460 MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
00461 {
00462 eigen_assert(m_isInitialized && "LLT is not initialized.");
00463 return matrixL() * matrixL().adjoint().toDenseMatrix();
00464 }
00465
00469 template<typename Derived>
00470 inline const LLT<typename MatrixBase<Derived>::PlainObject>
00471 MatrixBase<Derived>::llt() const
00472 {
00473 return LLT<PlainObject>(derived());
00474 }
00475
00479 template<typename MatrixType, unsigned int UpLo>
00480 inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
00481 SelfAdjointView<MatrixType, UpLo>::llt() const
00482 {
00483 return LLT<PlainObject,UpLo>(m_matrix);
00484 }
00485
00486 }
00487
00488 #endif // EIGEN_LLT_H