00001
00002 #ifndef TABLETOP_OBJECT_DETECTOR_MESSAGE_TABLETOPDETECTIONRESULT_H
00003 #define TABLETOP_OBJECT_DETECTOR_MESSAGE_TABLETOPDETECTIONRESULT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "tabletop_object_detector/Table.h"
00018 #include "sensor_msgs/PointCloud.h"
00019 #include "household_objects_database_msgs/DatabaseModelPoseList.h"
00020
00021 namespace tabletop_object_detector
00022 {
00023 template <class ContainerAllocator>
00024 struct TabletopDetectionResult_ {
00025 typedef TabletopDetectionResult_<ContainerAllocator> Type;
00026
00027 TabletopDetectionResult_()
00028 : table()
00029 , clusters()
00030 , models()
00031 , cluster_model_indices()
00032 , result(0)
00033 {
00034 }
00035
00036 TabletopDetectionResult_(const ContainerAllocator& _alloc)
00037 : table(_alloc)
00038 , clusters(_alloc)
00039 , models(_alloc)
00040 , cluster_model_indices(_alloc)
00041 , result(0)
00042 {
00043 }
00044
00045 typedef ::tabletop_object_detector::Table_<ContainerAllocator> _table_type;
00046 ::tabletop_object_detector::Table_<ContainerAllocator> table;
00047
00048 typedef std::vector< ::sensor_msgs::PointCloud_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::sensor_msgs::PointCloud_<ContainerAllocator> >::other > _clusters_type;
00049 std::vector< ::sensor_msgs::PointCloud_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::sensor_msgs::PointCloud_<ContainerAllocator> >::other > clusters;
00050
00051 typedef std::vector< ::household_objects_database_msgs::DatabaseModelPoseList_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPoseList_<ContainerAllocator> >::other > _models_type;
00052 std::vector< ::household_objects_database_msgs::DatabaseModelPoseList_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPoseList_<ContainerAllocator> >::other > models;
00053
00054 typedef std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > _cluster_model_indices_type;
00055 std::vector<int32_t, typename ContainerAllocator::template rebind<int32_t>::other > cluster_model_indices;
00056
00057 typedef int32_t _result_type;
00058 int32_t result;
00059
00060 enum { NO_CLOUD_RECEIVED = 1 };
00061 enum { NO_TABLE = 2 };
00062 enum { OTHER_ERROR = 3 };
00063 enum { SUCCESS = 4 };
00064
00065 typedef boost::shared_ptr< ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> > Ptr;
00066 typedef boost::shared_ptr< ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> const> ConstPtr;
00067 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00068 };
00069 typedef ::tabletop_object_detector::TabletopDetectionResult_<std::allocator<void> > TabletopDetectionResult;
00070
00071 typedef boost::shared_ptr< ::tabletop_object_detector::TabletopDetectionResult> TabletopDetectionResultPtr;
00072 typedef boost::shared_ptr< ::tabletop_object_detector::TabletopDetectionResult const> TabletopDetectionResultConstPtr;
00073
00074
00075 template<typename ContainerAllocator>
00076 std::ostream& operator<<(std::ostream& s, const ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> & v)
00077 {
00078 ros::message_operations::Printer< ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> >::stream(s, "", v);
00079 return s;}
00080
00081 }
00082
00083 namespace ros
00084 {
00085 namespace message_traits
00086 {
00087 template<class ContainerAllocator> struct IsMessage< ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> > : public TrueType {};
00088 template<class ContainerAllocator> struct IsMessage< ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> const> : public TrueType {};
00089 template<class ContainerAllocator>
00090 struct MD5Sum< ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> > {
00091 static const char* value()
00092 {
00093 return "a408fcf9deee726925fe8a8ed7d5d332";
00094 }
00095
00096 static const char* value(const ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> &) { return value(); }
00097 static const uint64_t static_value1 = 0xa408fcf9deee7269ULL;
00098 static const uint64_t static_value2 = 0x25fe8a8ed7d5d332ULL;
00099 };
00100
00101 template<class ContainerAllocator>
00102 struct DataType< ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> > {
00103 static const char* value()
00104 {
00105 return "tabletop_object_detector/TabletopDetectionResult";
00106 }
00107
00108 static const char* value(const ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> &) { return value(); }
00109 };
00110
00111 template<class ContainerAllocator>
00112 struct Definition< ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> > {
00113 static const char* value()
00114 {
00115 return "# Contains all the information from one run of the tabletop detection node\n\
00116 \n\
00117 # The information for the plane that has been detected\n\
00118 Table table\n\
00119 \n\
00120 # The raw clusters detected in the scan \n\
00121 sensor_msgs/PointCloud[] clusters\n\
00122 \n\
00123 # The list of potential models that have been detected for each cluster\n\
00124 # An empty list will be returned for a cluster that has no recognition results at all\n\
00125 household_objects_database_msgs/DatabaseModelPoseList[] models\n\
00126 \n\
00127 # For each cluster, the index of the list of models that was fit to that cluster\n\
00128 # keep in mind that multiple raw clusters can correspond to a single fit\n\
00129 int32[] cluster_model_indices\n\
00130 \n\
00131 # Whether the detection has succeeded or failed\n\
00132 int32 NO_CLOUD_RECEIVED = 1\n\
00133 int32 NO_TABLE = 2\n\
00134 int32 OTHER_ERROR = 3\n\
00135 int32 SUCCESS = 4\n\
00136 int32 result\n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: tabletop_object_detector/Table\n\
00140 # Informs that a planar table has been detected at a given location\n\
00141 \n\
00142 # The pose gives you the transform that take you to the coordinate system\n\
00143 # of the table, with the origin somewhere in the table plane and the \n\
00144 # z axis normal to the plane\n\
00145 geometry_msgs/PoseStamped pose\n\
00146 \n\
00147 # These values give you the observed extents of the table, along x and y,\n\
00148 # in the table's own coordinate system (above)\n\
00149 # there is no guarantee that the origin of the table coordinate system is\n\
00150 # inside the boundary defined by these values. \n\
00151 float32 x_min\n\
00152 float32 x_max\n\
00153 float32 y_min\n\
00154 float32 y_max\n\
00155 \n\
00156 # There is no guarantee that the table does NOT extend further than these \n\
00157 # values; this is just as far as we've observed it.\n\
00158 \n\
00159 \n\
00160 # Newer table definition as triangle mesh of convex hull (relative to pose)\n\
00161 shape_msgs/Mesh convex_hull\n\
00162 \n\
00163 ================================================================================\n\
00164 MSG: geometry_msgs/PoseStamped\n\
00165 # A Pose with reference coordinate frame and timestamp\n\
00166 Header header\n\
00167 Pose pose\n\
00168 \n\
00169 ================================================================================\n\
00170 MSG: std_msgs/Header\n\
00171 # Standard metadata for higher-level stamped data types.\n\
00172 # This is generally used to communicate timestamped data \n\
00173 # in a particular coordinate frame.\n\
00174 # \n\
00175 # sequence ID: consecutively increasing ID \n\
00176 uint32 seq\n\
00177 #Two-integer timestamp that is expressed as:\n\
00178 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00179 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00180 # time-handling sugar is provided by the client library\n\
00181 time stamp\n\
00182 #Frame this data is associated with\n\
00183 # 0: no frame\n\
00184 # 1: global frame\n\
00185 string frame_id\n\
00186 \n\
00187 ================================================================================\n\
00188 MSG: geometry_msgs/Pose\n\
00189 # A representation of pose in free space, composed of postion and orientation. \n\
00190 Point position\n\
00191 Quaternion orientation\n\
00192 \n\
00193 ================================================================================\n\
00194 MSG: geometry_msgs/Point\n\
00195 # This contains the position of a point in free space\n\
00196 float64 x\n\
00197 float64 y\n\
00198 float64 z\n\
00199 \n\
00200 ================================================================================\n\
00201 MSG: geometry_msgs/Quaternion\n\
00202 # This represents an orientation in free space in quaternion form.\n\
00203 \n\
00204 float64 x\n\
00205 float64 y\n\
00206 float64 z\n\
00207 float64 w\n\
00208 \n\
00209 ================================================================================\n\
00210 MSG: shape_msgs/Mesh\n\
00211 # Definition of a mesh\n\
00212 \n\
00213 # list of triangles; the index values refer to positions in vertices[]\n\
00214 MeshTriangle[] triangles\n\
00215 \n\
00216 # the actual vertices that make up the mesh\n\
00217 geometry_msgs/Point[] vertices\n\
00218 \n\
00219 ================================================================================\n\
00220 MSG: shape_msgs/MeshTriangle\n\
00221 # Definition of a triangle's vertices\n\
00222 uint32[3] vertex_indices\n\
00223 \n\
00224 ================================================================================\n\
00225 MSG: sensor_msgs/PointCloud\n\
00226 # This message holds a collection of 3d points, plus optional additional\n\
00227 # information about each point.\n\
00228 \n\
00229 # Time of sensor data acquisition, coordinate frame ID.\n\
00230 Header header\n\
00231 \n\
00232 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00233 # in the frame given in the header.\n\
00234 geometry_msgs/Point32[] points\n\
00235 \n\
00236 # Each channel should have the same number of elements as points array,\n\
00237 # and the data in each channel should correspond 1:1 with each point.\n\
00238 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00239 ChannelFloat32[] channels\n\
00240 \n\
00241 ================================================================================\n\
00242 MSG: geometry_msgs/Point32\n\
00243 # This contains the position of a point in free space(with 32 bits of precision).\n\
00244 # It is recommeded to use Point wherever possible instead of Point32. \n\
00245 # \n\
00246 # This recommendation is to promote interoperability. \n\
00247 #\n\
00248 # This message is designed to take up less space when sending\n\
00249 # lots of points at once, as in the case of a PointCloud. \n\
00250 \n\
00251 float32 x\n\
00252 float32 y\n\
00253 float32 z\n\
00254 ================================================================================\n\
00255 MSG: sensor_msgs/ChannelFloat32\n\
00256 # This message is used by the PointCloud message to hold optional data\n\
00257 # associated with each point in the cloud. The length of the values\n\
00258 # array should be the same as the length of the points array in the\n\
00259 # PointCloud, and each value should be associated with the corresponding\n\
00260 # point.\n\
00261 \n\
00262 # Channel names in existing practice include:\n\
00263 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00264 # This is opposite to usual conventions but remains for\n\
00265 # historical reasons. The newer PointCloud2 message has no\n\
00266 # such problem.\n\
00267 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00268 # (R,G,B) values packed into the least significant 24 bits,\n\
00269 # in order.\n\
00270 # \"intensity\" - laser or pixel intensity.\n\
00271 # \"distance\"\n\
00272 \n\
00273 # The channel name should give semantics of the channel (e.g.\n\
00274 # \"intensity\" instead of \"value\").\n\
00275 string name\n\
00276 \n\
00277 # The values array should be 1-1 with the elements of the associated\n\
00278 # PointCloud.\n\
00279 float32[] values\n\
00280 \n\
00281 ================================================================================\n\
00282 MSG: household_objects_database_msgs/DatabaseModelPoseList\n\
00283 # stores a list of possible database models recognition results\n\
00284 DatabaseModelPose[] model_list\n\
00285 ================================================================================\n\
00286 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00287 # Informs that a specific model from the Model Database has been \n\
00288 # identified at a certain location\n\
00289 \n\
00290 # the database id of the model\n\
00291 int32 model_id\n\
00292 \n\
00293 # if the object was recognized by the ORK pipeline, its type will be in here\n\
00294 # if this is not empty, then the string in here will be converted to a household_objects_database id\n\
00295 # leave this empty if providing an id in the model_id field\n\
00296 object_recognition_msgs/ObjectType type\n\
00297 \n\
00298 # the pose that it can be found in\n\
00299 geometry_msgs/PoseStamped pose\n\
00300 \n\
00301 # a measure of the confidence level in this detection result\n\
00302 float32 confidence\n\
00303 \n\
00304 # the name of the object detector that generated this detection result\n\
00305 string detector_name\n\
00306 \n\
00307 ================================================================================\n\
00308 MSG: object_recognition_msgs/ObjectType\n\
00309 ################################################## OBJECT ID #########################################################\n\
00310 \n\
00311 # Contains information about the type of a found object. Those two sets of parameters together uniquely define an\n\
00312 # object\n\
00313 \n\
00314 # The key of the found object: the unique identifier in the given db\n\
00315 string key\n\
00316 \n\
00317 # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding\n\
00318 # database. E.g., in object_recognition, it can look like: \"{'type':'CouchDB', 'root':'http://localhost'}\"\n\
00319 # There is no conventional format for those parameters and it's nice to keep that flexibility.\n\
00320 # The object_recognition_core as a generic DB type that can read those fields\n\
00321 # Current examples:\n\
00322 # For CouchDB:\n\
00323 # type: 'CouchDB'\n\
00324 # root: 'http://localhost:5984'\n\
00325 # collection: 'object_recognition'\n\
00326 # For SQL household database:\n\
00327 # type: 'SqlHousehold'\n\
00328 # host: 'wgs36'\n\
00329 # port: 5432\n\
00330 # user: 'willow'\n\
00331 # password: 'willow'\n\
00332 # name: 'household_objects'\n\
00333 # module: 'tabletop'\n\
00334 string db\n\
00335 \n\
00336 ";
00337 }
00338
00339 static const char* value(const ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> &) { return value(); }
00340 };
00341
00342 }
00343 }
00344
00345 namespace ros
00346 {
00347 namespace serialization
00348 {
00349
00350 template<class ContainerAllocator> struct Serializer< ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> >
00351 {
00352 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00353 {
00354 stream.next(m.table);
00355 stream.next(m.clusters);
00356 stream.next(m.models);
00357 stream.next(m.cluster_model_indices);
00358 stream.next(m.result);
00359 }
00360
00361 ROS_DECLARE_ALLINONE_SERIALIZER;
00362 };
00363 }
00364 }
00365
00366 namespace ros
00367 {
00368 namespace message_operations
00369 {
00370
00371 template<class ContainerAllocator>
00372 struct Printer< ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> >
00373 {
00374 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator> & v)
00375 {
00376 s << indent << "table: ";
00377 s << std::endl;
00378 Printer< ::tabletop_object_detector::Table_<ContainerAllocator> >::stream(s, indent + " ", v.table);
00379 s << indent << "clusters[]" << std::endl;
00380 for (size_t i = 0; i < v.clusters.size(); ++i)
00381 {
00382 s << indent << " clusters[" << i << "]: ";
00383 s << std::endl;
00384 s << indent;
00385 Printer< ::sensor_msgs::PointCloud_<ContainerAllocator> >::stream(s, indent + " ", v.clusters[i]);
00386 }
00387 s << indent << "models[]" << std::endl;
00388 for (size_t i = 0; i < v.models.size(); ++i)
00389 {
00390 s << indent << " models[" << i << "]: ";
00391 s << std::endl;
00392 s << indent;
00393 Printer< ::household_objects_database_msgs::DatabaseModelPoseList_<ContainerAllocator> >::stream(s, indent + " ", v.models[i]);
00394 }
00395 s << indent << "cluster_model_indices[]" << std::endl;
00396 for (size_t i = 0; i < v.cluster_model_indices.size(); ++i)
00397 {
00398 s << indent << " cluster_model_indices[" << i << "]: ";
00399 Printer<int32_t>::stream(s, indent + " ", v.cluster_model_indices[i]);
00400 }
00401 s << indent << "result: ";
00402 Printer<int32_t>::stream(s, indent + " ", v.result);
00403 }
00404 };
00405
00406
00407 }
00408 }
00409
00410 #endif // TABLETOP_OBJECT_DETECTOR_MESSAGE_TABLETOPDETECTIONRESULT_H
00411