TabletopCollisionMapProcessing.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-groovy-pr2_object_manipulation/doc_stacks/2014-10-06_11-30-38.833395/pr2_object_manipulation/perception/tabletop_collision_map_processing/srv/TabletopCollisionMapProcessing.srv */
00002 #ifndef TABLETOP_COLLISION_MAP_PROCESSING_SERVICE_TABLETOPCOLLISIONMAPPROCESSING_H
00003 #define TABLETOP_COLLISION_MAP_PROCESSING_SERVICE_TABLETOPCOLLISIONMAPPROCESSING_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "ros/service_traits.h"
00018 
00019 #include "tabletop_object_detector/TabletopDetectionResult.h"
00020 
00021 
00022 #include "manipulation_msgs/GraspableObject.h"
00023 
00024 namespace tabletop_collision_map_processing
00025 {
00026 template <class ContainerAllocator>
00027 struct TabletopCollisionMapProcessingRequest_ {
00028   typedef TabletopCollisionMapProcessingRequest_<ContainerAllocator> Type;
00029 
00030   TabletopCollisionMapProcessingRequest_()
00031   : detection_result()
00032   , reset_collision_models(false)
00033   , reset_attached_models(false)
00034   , desired_frame()
00035   {
00036   }
00037 
00038   TabletopCollisionMapProcessingRequest_(const ContainerAllocator& _alloc)
00039   : detection_result(_alloc)
00040   , reset_collision_models(false)
00041   , reset_attached_models(false)
00042   , desired_frame(_alloc)
00043   {
00044   }
00045 
00046   typedef  ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator>  _detection_result_type;
00047    ::tabletop_object_detector::TabletopDetectionResult_<ContainerAllocator>  detection_result;
00048 
00049   typedef uint8_t _reset_collision_models_type;
00050   uint8_t reset_collision_models;
00051 
00052   typedef uint8_t _reset_attached_models_type;
00053   uint8_t reset_attached_models;
00054 
00055   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _desired_frame_type;
00056   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  desired_frame;
00057 
00058 
00059   typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > Ptr;
00060   typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator>  const> ConstPtr;
00061   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00062 }; // struct TabletopCollisionMapProcessingRequest
00063 typedef  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<std::allocator<void> > TabletopCollisionMapProcessingRequest;
00064 
00065 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest> TabletopCollisionMapProcessingRequestPtr;
00066 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest const> TabletopCollisionMapProcessingRequestConstPtr;
00067 
00068 
00069 
00070 template <class ContainerAllocator>
00071 struct TabletopCollisionMapProcessingResponse_ {
00072   typedef TabletopCollisionMapProcessingResponse_<ContainerAllocator> Type;
00073 
00074   TabletopCollisionMapProcessingResponse_()
00075   : graspable_objects()
00076   , collision_object_names()
00077   , collision_support_surface_name()
00078   {
00079   }
00080 
00081   TabletopCollisionMapProcessingResponse_(const ContainerAllocator& _alloc)
00082   : graspable_objects(_alloc)
00083   , collision_object_names(_alloc)
00084   , collision_support_surface_name(_alloc)
00085   {
00086   }
00087 
00088   typedef std::vector< ::manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::manipulation_msgs::GraspableObject_<ContainerAllocator> >::other >  _graspable_objects_type;
00089   std::vector< ::manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::manipulation_msgs::GraspableObject_<ContainerAllocator> >::other >  graspable_objects;
00090 
00091   typedef std::vector<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > , typename ContainerAllocator::template rebind<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::other >  _collision_object_names_type;
00092   std::vector<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > , typename ContainerAllocator::template rebind<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::other >  collision_object_names;
00093 
00094   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _collision_support_surface_name_type;
00095   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  collision_support_surface_name;
00096 
00097 
00098   typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > Ptr;
00099   typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator>  const> ConstPtr;
00100   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00101 }; // struct TabletopCollisionMapProcessingResponse
00102 typedef  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<std::allocator<void> > TabletopCollisionMapProcessingResponse;
00103 
00104 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse> TabletopCollisionMapProcessingResponsePtr;
00105 typedef boost::shared_ptr< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse const> TabletopCollisionMapProcessingResponseConstPtr;
00106 
00107 
00108 struct TabletopCollisionMapProcessing
00109 {
00110 
00111 typedef TabletopCollisionMapProcessingRequest Request;
00112 typedef TabletopCollisionMapProcessingResponse Response;
00113 Request request;
00114 Response response;
00115 
00116 typedef Request RequestType;
00117 typedef Response ResponseType;
00118 }; // struct TabletopCollisionMapProcessing
00119 } // namespace tabletop_collision_map_processing
00120 
00121 namespace ros
00122 {
00123 namespace message_traits
00124 {
00125 template<class ContainerAllocator> struct IsMessage< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > : public TrueType {};
00126 template<class ContainerAllocator> struct IsMessage< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator>  const> : public TrueType {};
00127 template<class ContainerAllocator>
00128 struct MD5Sum< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
00129   static const char* value() 
00130   {
00131     return "18a3708a4404b659def754ff5dc4dbb3";
00132   }
00133 
00134   static const char* value(const  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 
00135   static const uint64_t static_value1 = 0x18a3708a4404b659ULL;
00136   static const uint64_t static_value2 = 0xdef754ff5dc4dbb3ULL;
00137 };
00138 
00139 template<class ContainerAllocator>
00140 struct DataType< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
00141   static const char* value() 
00142   {
00143     return "tabletop_collision_map_processing/TabletopCollisionMapProcessingRequest";
00144   }
00145 
00146   static const char* value(const  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 
00147 };
00148 
00149 template<class ContainerAllocator>
00150 struct Definition< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
00151   static const char* value() 
00152   {
00153     return "\n\
00154 \n\
00155 \n\
00156 \n\
00157 \n\
00158 \n\
00159 \n\
00160 tabletop_object_detector/TabletopDetectionResult detection_result\n\
00161 \n\
00162 \n\
00163 bool reset_collision_models\n\
00164 \n\
00165 \n\
00166 bool reset_attached_models\n\
00167 \n\
00168 \n\
00169 \n\
00170 string desired_frame\n\
00171 \n\
00172 \n\
00173 ================================================================================\n\
00174 MSG: tabletop_object_detector/TabletopDetectionResult\n\
00175 # Contains all the information from one run of the tabletop detection node\n\
00176 \n\
00177 # The information for the plane that has been detected\n\
00178 Table table\n\
00179 \n\
00180 # The raw clusters detected in the scan \n\
00181 sensor_msgs/PointCloud[] clusters\n\
00182 \n\
00183 # The list of potential models that have been detected for each cluster\n\
00184 # An empty list will be returned for a cluster that has no recognition results at all\n\
00185 household_objects_database_msgs/DatabaseModelPoseList[] models\n\
00186 \n\
00187 # For each cluster, the index of the list of models that was fit to that cluster\n\
00188 # keep in mind that multiple raw clusters can correspond to a single fit\n\
00189 int32[] cluster_model_indices\n\
00190 \n\
00191 # Whether the detection has succeeded or failed\n\
00192 int32 NO_CLOUD_RECEIVED = 1\n\
00193 int32 NO_TABLE = 2\n\
00194 int32 OTHER_ERROR = 3\n\
00195 int32 SUCCESS = 4\n\
00196 int32 result\n\
00197 \n\
00198 ================================================================================\n\
00199 MSG: tabletop_object_detector/Table\n\
00200 # Informs that a planar table has been detected at a given location\n\
00201 \n\
00202 # The pose gives you the transform that take you to the coordinate system\n\
00203 # of the table, with the origin somewhere in the table plane and the \n\
00204 # z axis normal to the plane\n\
00205 geometry_msgs/PoseStamped pose\n\
00206 \n\
00207 # These values give you the observed extents of the table, along x and y,\n\
00208 # in the table's own coordinate system (above)\n\
00209 # there is no guarantee that the origin of the table coordinate system is\n\
00210 # inside the boundary defined by these values. \n\
00211 float32 x_min\n\
00212 float32 x_max\n\
00213 float32 y_min\n\
00214 float32 y_max\n\
00215 \n\
00216 # There is no guarantee that the table does NOT extend further than these \n\
00217 # values; this is just as far as we've observed it.\n\
00218 \n\
00219 \n\
00220 # Newer table definition as triangle mesh of convex hull (relative to pose)\n\
00221 shape_msgs/Mesh convex_hull\n\
00222 \n\
00223 ================================================================================\n\
00224 MSG: geometry_msgs/PoseStamped\n\
00225 # A Pose with reference coordinate frame and timestamp\n\
00226 Header header\n\
00227 Pose pose\n\
00228 \n\
00229 ================================================================================\n\
00230 MSG: std_msgs/Header\n\
00231 # Standard metadata for higher-level stamped data types.\n\
00232 # This is generally used to communicate timestamped data \n\
00233 # in a particular coordinate frame.\n\
00234 # \n\
00235 # sequence ID: consecutively increasing ID \n\
00236 uint32 seq\n\
00237 #Two-integer timestamp that is expressed as:\n\
00238 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00239 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00240 # time-handling sugar is provided by the client library\n\
00241 time stamp\n\
00242 #Frame this data is associated with\n\
00243 # 0: no frame\n\
00244 # 1: global frame\n\
00245 string frame_id\n\
00246 \n\
00247 ================================================================================\n\
00248 MSG: geometry_msgs/Pose\n\
00249 # A representation of pose in free space, composed of postion and orientation. \n\
00250 Point position\n\
00251 Quaternion orientation\n\
00252 \n\
00253 ================================================================================\n\
00254 MSG: geometry_msgs/Point\n\
00255 # This contains the position of a point in free space\n\
00256 float64 x\n\
00257 float64 y\n\
00258 float64 z\n\
00259 \n\
00260 ================================================================================\n\
00261 MSG: geometry_msgs/Quaternion\n\
00262 # This represents an orientation in free space in quaternion form.\n\
00263 \n\
00264 float64 x\n\
00265 float64 y\n\
00266 float64 z\n\
00267 float64 w\n\
00268 \n\
00269 ================================================================================\n\
00270 MSG: shape_msgs/Mesh\n\
00271 # Definition of a mesh\n\
00272 \n\
00273 # list of triangles; the index values refer to positions in vertices[]\n\
00274 MeshTriangle[] triangles\n\
00275 \n\
00276 # the actual vertices that make up the mesh\n\
00277 geometry_msgs/Point[] vertices\n\
00278 \n\
00279 ================================================================================\n\
00280 MSG: shape_msgs/MeshTriangle\n\
00281 # Definition of a triangle's vertices\n\
00282 uint32[3] vertex_indices\n\
00283 \n\
00284 ================================================================================\n\
00285 MSG: sensor_msgs/PointCloud\n\
00286 # This message holds a collection of 3d points, plus optional additional\n\
00287 # information about each point.\n\
00288 \n\
00289 # Time of sensor data acquisition, coordinate frame ID.\n\
00290 Header header\n\
00291 \n\
00292 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00293 # in the frame given in the header.\n\
00294 geometry_msgs/Point32[] points\n\
00295 \n\
00296 # Each channel should have the same number of elements as points array,\n\
00297 # and the data in each channel should correspond 1:1 with each point.\n\
00298 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00299 ChannelFloat32[] channels\n\
00300 \n\
00301 ================================================================================\n\
00302 MSG: geometry_msgs/Point32\n\
00303 # This contains the position of a point in free space(with 32 bits of precision).\n\
00304 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00305 # \n\
00306 # This recommendation is to promote interoperability.  \n\
00307 #\n\
00308 # This message is designed to take up less space when sending\n\
00309 # lots of points at once, as in the case of a PointCloud.  \n\
00310 \n\
00311 float32 x\n\
00312 float32 y\n\
00313 float32 z\n\
00314 ================================================================================\n\
00315 MSG: sensor_msgs/ChannelFloat32\n\
00316 # This message is used by the PointCloud message to hold optional data\n\
00317 # associated with each point in the cloud. The length of the values\n\
00318 # array should be the same as the length of the points array in the\n\
00319 # PointCloud, and each value should be associated with the corresponding\n\
00320 # point.\n\
00321 \n\
00322 # Channel names in existing practice include:\n\
00323 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00324 #              This is opposite to usual conventions but remains for\n\
00325 #              historical reasons. The newer PointCloud2 message has no\n\
00326 #              such problem.\n\
00327 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00328 #           (R,G,B) values packed into the least significant 24 bits,\n\
00329 #           in order.\n\
00330 #   \"intensity\" - laser or pixel intensity.\n\
00331 #   \"distance\"\n\
00332 \n\
00333 # The channel name should give semantics of the channel (e.g.\n\
00334 # \"intensity\" instead of \"value\").\n\
00335 string name\n\
00336 \n\
00337 # The values array should be 1-1 with the elements of the associated\n\
00338 # PointCloud.\n\
00339 float32[] values\n\
00340 \n\
00341 ================================================================================\n\
00342 MSG: household_objects_database_msgs/DatabaseModelPoseList\n\
00343 # stores a list of possible database models recognition results\n\
00344 DatabaseModelPose[] model_list\n\
00345 ================================================================================\n\
00346 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00347 # Informs that a specific model from the Model Database has been \n\
00348 # identified at a certain location\n\
00349 \n\
00350 # the database id of the model\n\
00351 int32 model_id\n\
00352 \n\
00353 # if the object was recognized by the ORK pipeline, its type will be in here\n\
00354 # if this is not empty, then the string in here will be converted to a household_objects_database id\n\
00355 # leave this empty if providing an id in the model_id field\n\
00356 object_recognition_msgs/ObjectType type\n\
00357 \n\
00358 # the pose that it can be found in\n\
00359 geometry_msgs/PoseStamped pose\n\
00360 \n\
00361 # a measure of the confidence level in this detection result\n\
00362 float32 confidence\n\
00363 \n\
00364 # the name of the object detector that generated this detection result\n\
00365 string detector_name\n\
00366 \n\
00367 ================================================================================\n\
00368 MSG: object_recognition_msgs/ObjectType\n\
00369 ################################################## OBJECT ID #########################################################\n\
00370 \n\
00371 # Contains information about the type of a found object. Those two sets of parameters together uniquely define an\n\
00372 # object\n\
00373 \n\
00374 # The key of the found object: the unique identifier in the given db\n\
00375 string key\n\
00376 \n\
00377 # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding\n\
00378 # database. E.g., in object_recognition, it can look like: \"{'type':'CouchDB', 'root':'http://localhost'}\"\n\
00379 # There is no conventional format for those parameters and it's nice to keep that flexibility.\n\
00380 # The object_recognition_core as a generic DB type that can read those fields\n\
00381 # Current examples:\n\
00382 # For CouchDB:\n\
00383 #   type: 'CouchDB'\n\
00384 #   root: 'http://localhost:5984'\n\
00385 #   collection: 'object_recognition'\n\
00386 # For SQL household database:\n\
00387 #   type: 'SqlHousehold'\n\
00388 #   host: 'wgs36'\n\
00389 #   port: 5432\n\
00390 #   user: 'willow'\n\
00391 #   password: 'willow'\n\
00392 #   name: 'household_objects'\n\
00393 #   module: 'tabletop'\n\
00394 string db\n\
00395 \n\
00396 ";
00397   }
00398 
00399   static const char* value(const  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 
00400 };
00401 
00402 } // namespace message_traits
00403 } // namespace ros
00404 
00405 
00406 namespace ros
00407 {
00408 namespace message_traits
00409 {
00410 template<class ContainerAllocator> struct IsMessage< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > : public TrueType {};
00411 template<class ContainerAllocator> struct IsMessage< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator>  const> : public TrueType {};
00412 template<class ContainerAllocator>
00413 struct MD5Sum< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
00414   static const char* value() 
00415   {
00416     return "4ec7913db348a0083551a1e3d51778b8";
00417   }
00418 
00419   static const char* value(const  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 
00420   static const uint64_t static_value1 = 0x4ec7913db348a008ULL;
00421   static const uint64_t static_value2 = 0x3551a1e3d51778b8ULL;
00422 };
00423 
00424 template<class ContainerAllocator>
00425 struct DataType< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
00426   static const char* value() 
00427   {
00428     return "tabletop_collision_map_processing/TabletopCollisionMapProcessingResponse";
00429   }
00430 
00431   static const char* value(const  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 
00432 };
00433 
00434 template<class ContainerAllocator>
00435 struct Definition< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
00436   static const char* value() 
00437   {
00438     return "\n\
00439 \n\
00440 manipulation_msgs/GraspableObject[] graspable_objects\n\
00441 \n\
00442 \n\
00443 \n\
00444 string[] collision_object_names\n\
00445 \n\
00446 \n\
00447 string collision_support_surface_name\n\
00448 \n\
00449 \n\
00450 ================================================================================\n\
00451 MSG: manipulation_msgs/GraspableObject\n\
00452 # an object that the object_manipulator can work on\n\
00453 \n\
00454 # a graspable object can be represented in multiple ways. This message\n\
00455 # can contain all of them. Which one is actually used is up to the receiver\n\
00456 # of this message. When adding new representations, one must be careful that\n\
00457 # they have reasonable lightweight defaults indicating that that particular\n\
00458 # representation is not available.\n\
00459 \n\
00460 # the tf frame to be used as a reference frame when combining information from\n\
00461 # the different representations below\n\
00462 string reference_frame_id\n\
00463 \n\
00464 # potential recognition results from a database of models\n\
00465 # all poses are relative to the object reference pose\n\
00466 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00467 \n\
00468 # the point cloud itself\n\
00469 sensor_msgs/PointCloud cluster\n\
00470 \n\
00471 # a region of a PointCloud2 of interest\n\
00472 SceneRegion region\n\
00473 \n\
00474 # the name that this object has in the collision environment\n\
00475 string collision_name\n\
00476 ================================================================================\n\
00477 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00478 # Informs that a specific model from the Model Database has been \n\
00479 # identified at a certain location\n\
00480 \n\
00481 # the database id of the model\n\
00482 int32 model_id\n\
00483 \n\
00484 # if the object was recognized by the ORK pipeline, its type will be in here\n\
00485 # if this is not empty, then the string in here will be converted to a household_objects_database id\n\
00486 # leave this empty if providing an id in the model_id field\n\
00487 object_recognition_msgs/ObjectType type\n\
00488 \n\
00489 # the pose that it can be found in\n\
00490 geometry_msgs/PoseStamped pose\n\
00491 \n\
00492 # a measure of the confidence level in this detection result\n\
00493 float32 confidence\n\
00494 \n\
00495 # the name of the object detector that generated this detection result\n\
00496 string detector_name\n\
00497 \n\
00498 ================================================================================\n\
00499 MSG: object_recognition_msgs/ObjectType\n\
00500 ################################################## OBJECT ID #########################################################\n\
00501 \n\
00502 # Contains information about the type of a found object. Those two sets of parameters together uniquely define an\n\
00503 # object\n\
00504 \n\
00505 # The key of the found object: the unique identifier in the given db\n\
00506 string key\n\
00507 \n\
00508 # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding\n\
00509 # database. E.g., in object_recognition, it can look like: \"{'type':'CouchDB', 'root':'http://localhost'}\"\n\
00510 # There is no conventional format for those parameters and it's nice to keep that flexibility.\n\
00511 # The object_recognition_core as a generic DB type that can read those fields\n\
00512 # Current examples:\n\
00513 # For CouchDB:\n\
00514 #   type: 'CouchDB'\n\
00515 #   root: 'http://localhost:5984'\n\
00516 #   collection: 'object_recognition'\n\
00517 # For SQL household database:\n\
00518 #   type: 'SqlHousehold'\n\
00519 #   host: 'wgs36'\n\
00520 #   port: 5432\n\
00521 #   user: 'willow'\n\
00522 #   password: 'willow'\n\
00523 #   name: 'household_objects'\n\
00524 #   module: 'tabletop'\n\
00525 string db\n\
00526 \n\
00527 ================================================================================\n\
00528 MSG: geometry_msgs/PoseStamped\n\
00529 # A Pose with reference coordinate frame and timestamp\n\
00530 Header header\n\
00531 Pose pose\n\
00532 \n\
00533 ================================================================================\n\
00534 MSG: std_msgs/Header\n\
00535 # Standard metadata for higher-level stamped data types.\n\
00536 # This is generally used to communicate timestamped data \n\
00537 # in a particular coordinate frame.\n\
00538 # \n\
00539 # sequence ID: consecutively increasing ID \n\
00540 uint32 seq\n\
00541 #Two-integer timestamp that is expressed as:\n\
00542 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00543 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00544 # time-handling sugar is provided by the client library\n\
00545 time stamp\n\
00546 #Frame this data is associated with\n\
00547 # 0: no frame\n\
00548 # 1: global frame\n\
00549 string frame_id\n\
00550 \n\
00551 ================================================================================\n\
00552 MSG: geometry_msgs/Pose\n\
00553 # A representation of pose in free space, composed of postion and orientation. \n\
00554 Point position\n\
00555 Quaternion orientation\n\
00556 \n\
00557 ================================================================================\n\
00558 MSG: geometry_msgs/Point\n\
00559 # This contains the position of a point in free space\n\
00560 float64 x\n\
00561 float64 y\n\
00562 float64 z\n\
00563 \n\
00564 ================================================================================\n\
00565 MSG: geometry_msgs/Quaternion\n\
00566 # This represents an orientation in free space in quaternion form.\n\
00567 \n\
00568 float64 x\n\
00569 float64 y\n\
00570 float64 z\n\
00571 float64 w\n\
00572 \n\
00573 ================================================================================\n\
00574 MSG: sensor_msgs/PointCloud\n\
00575 # This message holds a collection of 3d points, plus optional additional\n\
00576 # information about each point.\n\
00577 \n\
00578 # Time of sensor data acquisition, coordinate frame ID.\n\
00579 Header header\n\
00580 \n\
00581 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00582 # in the frame given in the header.\n\
00583 geometry_msgs/Point32[] points\n\
00584 \n\
00585 # Each channel should have the same number of elements as points array,\n\
00586 # and the data in each channel should correspond 1:1 with each point.\n\
00587 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00588 ChannelFloat32[] channels\n\
00589 \n\
00590 ================================================================================\n\
00591 MSG: geometry_msgs/Point32\n\
00592 # This contains the position of a point in free space(with 32 bits of precision).\n\
00593 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00594 # \n\
00595 # This recommendation is to promote interoperability.  \n\
00596 #\n\
00597 # This message is designed to take up less space when sending\n\
00598 # lots of points at once, as in the case of a PointCloud.  \n\
00599 \n\
00600 float32 x\n\
00601 float32 y\n\
00602 float32 z\n\
00603 ================================================================================\n\
00604 MSG: sensor_msgs/ChannelFloat32\n\
00605 # This message is used by the PointCloud message to hold optional data\n\
00606 # associated with each point in the cloud. The length of the values\n\
00607 # array should be the same as the length of the points array in the\n\
00608 # PointCloud, and each value should be associated with the corresponding\n\
00609 # point.\n\
00610 \n\
00611 # Channel names in existing practice include:\n\
00612 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00613 #              This is opposite to usual conventions but remains for\n\
00614 #              historical reasons. The newer PointCloud2 message has no\n\
00615 #              such problem.\n\
00616 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00617 #           (R,G,B) values packed into the least significant 24 bits,\n\
00618 #           in order.\n\
00619 #   \"intensity\" - laser or pixel intensity.\n\
00620 #   \"distance\"\n\
00621 \n\
00622 # The channel name should give semantics of the channel (e.g.\n\
00623 # \"intensity\" instead of \"value\").\n\
00624 string name\n\
00625 \n\
00626 # The values array should be 1-1 with the elements of the associated\n\
00627 # PointCloud.\n\
00628 float32[] values\n\
00629 \n\
00630 ================================================================================\n\
00631 MSG: manipulation_msgs/SceneRegion\n\
00632 # Point cloud\n\
00633 sensor_msgs/PointCloud2 cloud\n\
00634 \n\
00635 # Indices for the region of interest\n\
00636 int32[] mask\n\
00637 \n\
00638 # One of the corresponding 2D images, if applicable\n\
00639 sensor_msgs/Image image\n\
00640 \n\
00641 # The disparity image, if applicable\n\
00642 sensor_msgs/Image disparity_image\n\
00643 \n\
00644 # Camera info for the camera that took the image\n\
00645 sensor_msgs/CameraInfo cam_info\n\
00646 \n\
00647 # a 3D region of interest for grasp planning\n\
00648 geometry_msgs/PoseStamped  roi_box_pose\n\
00649 geometry_msgs/Vector3      roi_box_dims\n\
00650 \n\
00651 ================================================================================\n\
00652 MSG: sensor_msgs/PointCloud2\n\
00653 # This message holds a collection of N-dimensional points, which may\n\
00654 # contain additional information such as normals, intensity, etc. The\n\
00655 # point data is stored as a binary blob, its layout described by the\n\
00656 # contents of the \"fields\" array.\n\
00657 \n\
00658 # The point cloud data may be organized 2d (image-like) or 1d\n\
00659 # (unordered). Point clouds organized as 2d images may be produced by\n\
00660 # camera depth sensors such as stereo or time-of-flight.\n\
00661 \n\
00662 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00663 # points).\n\
00664 Header header\n\
00665 \n\
00666 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00667 # 1 and width is the length of the point cloud.\n\
00668 uint32 height\n\
00669 uint32 width\n\
00670 \n\
00671 # Describes the channels and their layout in the binary data blob.\n\
00672 PointField[] fields\n\
00673 \n\
00674 bool    is_bigendian # Is this data bigendian?\n\
00675 uint32  point_step   # Length of a point in bytes\n\
00676 uint32  row_step     # Length of a row in bytes\n\
00677 uint8[] data         # Actual point data, size is (row_step*height)\n\
00678 \n\
00679 bool is_dense        # True if there are no invalid points\n\
00680 \n\
00681 ================================================================================\n\
00682 MSG: sensor_msgs/PointField\n\
00683 # This message holds the description of one point entry in the\n\
00684 # PointCloud2 message format.\n\
00685 uint8 INT8    = 1\n\
00686 uint8 UINT8   = 2\n\
00687 uint8 INT16   = 3\n\
00688 uint8 UINT16  = 4\n\
00689 uint8 INT32   = 5\n\
00690 uint8 UINT32  = 6\n\
00691 uint8 FLOAT32 = 7\n\
00692 uint8 FLOAT64 = 8\n\
00693 \n\
00694 string name      # Name of field\n\
00695 uint32 offset    # Offset from start of point struct\n\
00696 uint8  datatype  # Datatype enumeration, see above\n\
00697 uint32 count     # How many elements in the field\n\
00698 \n\
00699 ================================================================================\n\
00700 MSG: sensor_msgs/Image\n\
00701 # This message contains an uncompressed image\n\
00702 # (0, 0) is at top-left corner of image\n\
00703 #\n\
00704 \n\
00705 Header header        # Header timestamp should be acquisition time of image\n\
00706                      # Header frame_id should be optical frame of camera\n\
00707                      # origin of frame should be optical center of cameara\n\
00708                      # +x should point to the right in the image\n\
00709                      # +y should point down in the image\n\
00710                      # +z should point into to plane of the image\n\
00711                      # If the frame_id here and the frame_id of the CameraInfo\n\
00712                      # message associated with the image conflict\n\
00713                      # the behavior is undefined\n\
00714 \n\
00715 uint32 height         # image height, that is, number of rows\n\
00716 uint32 width          # image width, that is, number of columns\n\
00717 \n\
00718 # The legal values for encoding are in file src/image_encodings.cpp\n\
00719 # If you want to standardize a new string format, join\n\
00720 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00721 \n\
00722 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00723                       # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00724 \n\
00725 uint8 is_bigendian    # is this data bigendian?\n\
00726 uint32 step           # Full row length in bytes\n\
00727 uint8[] data          # actual matrix data, size is (step * rows)\n\
00728 \n\
00729 ================================================================================\n\
00730 MSG: sensor_msgs/CameraInfo\n\
00731 # This message defines meta information for a camera. It should be in a\n\
00732 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00733 # image topics named:\n\
00734 #\n\
00735 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00736 #   image            - monochrome, distorted\n\
00737 #   image_color      - color, distorted\n\
00738 #   image_rect       - monochrome, rectified\n\
00739 #   image_rect_color - color, rectified\n\
00740 #\n\
00741 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00742 # for producing the four processed image topics from image_raw and\n\
00743 # camera_info. The meaning of the camera parameters are described in\n\
00744 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00745 #\n\
00746 # The image_geometry package provides a user-friendly interface to\n\
00747 # common operations using this meta information. If you want to, e.g.,\n\
00748 # project a 3d point into image coordinates, we strongly recommend\n\
00749 # using image_geometry.\n\
00750 #\n\
00751 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00752 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00753 # indicates an uncalibrated camera.\n\
00754 \n\
00755 #######################################################################\n\
00756 #                     Image acquisition info                          #\n\
00757 #######################################################################\n\
00758 \n\
00759 # Time of image acquisition, camera coordinate frame ID\n\
00760 Header header    # Header timestamp should be acquisition time of image\n\
00761                  # Header frame_id should be optical frame of camera\n\
00762                  # origin of frame should be optical center of camera\n\
00763                  # +x should point to the right in the image\n\
00764                  # +y should point down in the image\n\
00765                  # +z should point into the plane of the image\n\
00766 \n\
00767 \n\
00768 #######################################################################\n\
00769 #                      Calibration Parameters                         #\n\
00770 #######################################################################\n\
00771 # These are fixed during camera calibration. Their values will be the #\n\
00772 # same in all messages until the camera is recalibrated. Note that    #\n\
00773 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00774 #                                                                     #\n\
00775 # The internal parameters can be used to warp a raw (distorted) image #\n\
00776 # to:                                                                 #\n\
00777 #   1. An undistorted image (requires D and K)                        #\n\
00778 #   2. A rectified image (requires D, K, R)                           #\n\
00779 # The projection matrix P projects 3D points into the rectified image.#\n\
00780 #######################################################################\n\
00781 \n\
00782 # The image dimensions with which the camera was calibrated. Normally\n\
00783 # this will be the full camera resolution in pixels.\n\
00784 uint32 height\n\
00785 uint32 width\n\
00786 \n\
00787 # The distortion model used. Supported models are listed in\n\
00788 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00789 # simple model of radial and tangential distortion - is sufficent.\n\
00790 string distortion_model\n\
00791 \n\
00792 # The distortion parameters, size depending on the distortion model.\n\
00793 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00794 float64[] D\n\
00795 \n\
00796 # Intrinsic camera matrix for the raw (distorted) images.\n\
00797 #     [fx  0 cx]\n\
00798 # K = [ 0 fy cy]\n\
00799 #     [ 0  0  1]\n\
00800 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00801 # coordinates using the focal lengths (fx, fy) and principal point\n\
00802 # (cx, cy).\n\
00803 float64[9]  K # 3x3 row-major matrix\n\
00804 \n\
00805 # Rectification matrix (stereo cameras only)\n\
00806 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00807 # stereo image plane so that epipolar lines in both stereo images are\n\
00808 # parallel.\n\
00809 float64[9]  R # 3x3 row-major matrix\n\
00810 \n\
00811 # Projection/camera matrix\n\
00812 #     [fx'  0  cx' Tx]\n\
00813 # P = [ 0  fy' cy' Ty]\n\
00814 #     [ 0   0   1   0]\n\
00815 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00816 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00817 #  is the normal camera intrinsic matrix for the rectified image.\n\
00818 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00819 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00820 #  (cx', cy') - these may differ from the values in K.\n\
00821 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00822 #  also have R = the identity and P[1:3,1:3] = K.\n\
00823 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00824 #  position of the optical center of the second camera in the first\n\
00825 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00826 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00827 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00828 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00829 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00830 #  the rectified image is given by:\n\
00831 #  [u v w]' = P * [X Y Z 1]'\n\
00832 #         x = u / w\n\
00833 #         y = v / w\n\
00834 #  This holds for both images of a stereo pair.\n\
00835 float64[12] P # 3x4 row-major matrix\n\
00836 \n\
00837 \n\
00838 #######################################################################\n\
00839 #                      Operational Parameters                         #\n\
00840 #######################################################################\n\
00841 # These define the image region actually captured by the camera       #\n\
00842 # driver. Although they affect the geometry of the output image, they #\n\
00843 # may be changed freely without recalibrating the camera.             #\n\
00844 #######################################################################\n\
00845 \n\
00846 # Binning refers here to any camera setting which combines rectangular\n\
00847 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00848 #  resolution of the output image to\n\
00849 #  (width / binning_x) x (height / binning_y).\n\
00850 # The default values binning_x = binning_y = 0 is considered the same\n\
00851 #  as binning_x = binning_y = 1 (no subsampling).\n\
00852 uint32 binning_x\n\
00853 uint32 binning_y\n\
00854 \n\
00855 # Region of interest (subwindow of full camera resolution), given in\n\
00856 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00857 #  always denotes the same window of pixels on the camera sensor,\n\
00858 #  regardless of binning settings.\n\
00859 # The default setting of roi (all values 0) is considered the same as\n\
00860 #  full resolution (roi.width = width, roi.height = height).\n\
00861 RegionOfInterest roi\n\
00862 \n\
00863 ================================================================================\n\
00864 MSG: sensor_msgs/RegionOfInterest\n\
00865 # This message is used to specify a region of interest within an image.\n\
00866 #\n\
00867 # When used to specify the ROI setting of the camera when the image was\n\
00868 # taken, the height and width fields should either match the height and\n\
00869 # width fields for the associated image; or height = width = 0\n\
00870 # indicates that the full resolution image was captured.\n\
00871 \n\
00872 uint32 x_offset  # Leftmost pixel of the ROI\n\
00873                  # (0 if the ROI includes the left edge of the image)\n\
00874 uint32 y_offset  # Topmost pixel of the ROI\n\
00875                  # (0 if the ROI includes the top edge of the image)\n\
00876 uint32 height    # Height of ROI\n\
00877 uint32 width     # Width of ROI\n\
00878 \n\
00879 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00880 # ROI in this message. Typically this should be False if the full image\n\
00881 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00882 # used).\n\
00883 bool do_rectify\n\
00884 \n\
00885 ================================================================================\n\
00886 MSG: geometry_msgs/Vector3\n\
00887 # This represents a vector in free space. \n\
00888 \n\
00889 float64 x\n\
00890 float64 y\n\
00891 float64 z\n\
00892 ";
00893   }
00894 
00895   static const char* value(const  ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 
00896 };
00897 
00898 } // namespace message_traits
00899 } // namespace ros
00900 
00901 namespace ros
00902 {
00903 namespace serialization
00904 {
00905 
00906 template<class ContainerAllocator> struct Serializer< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> >
00907 {
00908   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00909   {
00910     stream.next(m.detection_result);
00911     stream.next(m.reset_collision_models);
00912     stream.next(m.reset_attached_models);
00913     stream.next(m.desired_frame);
00914   }
00915 
00916   ROS_DECLARE_ALLINONE_SERIALIZER;
00917 }; // struct TabletopCollisionMapProcessingRequest_
00918 } // namespace serialization
00919 } // namespace ros
00920 
00921 
00922 namespace ros
00923 {
00924 namespace serialization
00925 {
00926 
00927 template<class ContainerAllocator> struct Serializer< ::tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> >
00928 {
00929   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00930   {
00931     stream.next(m.graspable_objects);
00932     stream.next(m.collision_object_names);
00933     stream.next(m.collision_support_surface_name);
00934   }
00935 
00936   ROS_DECLARE_ALLINONE_SERIALIZER;
00937 }; // struct TabletopCollisionMapProcessingResponse_
00938 } // namespace serialization
00939 } // namespace ros
00940 
00941 namespace ros
00942 {
00943 namespace service_traits
00944 {
00945 template<>
00946 struct MD5Sum<tabletop_collision_map_processing::TabletopCollisionMapProcessing> {
00947   static const char* value() 
00948   {
00949     return "9bb0e67d3827378f877a06e70c6e4b13";
00950   }
00951 
00952   static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessing&) { return value(); } 
00953 };
00954 
00955 template<>
00956 struct DataType<tabletop_collision_map_processing::TabletopCollisionMapProcessing> {
00957   static const char* value() 
00958   {
00959     return "tabletop_collision_map_processing/TabletopCollisionMapProcessing";
00960   }
00961 
00962   static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessing&) { return value(); } 
00963 };
00964 
00965 template<class ContainerAllocator>
00966 struct MD5Sum<tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
00967   static const char* value() 
00968   {
00969     return "9bb0e67d3827378f877a06e70c6e4b13";
00970   }
00971 
00972   static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 
00973 };
00974 
00975 template<class ContainerAllocator>
00976 struct DataType<tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> > {
00977   static const char* value() 
00978   {
00979     return "tabletop_collision_map_processing/TabletopCollisionMapProcessing";
00980   }
00981 
00982   static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingRequest_<ContainerAllocator> &) { return value(); } 
00983 };
00984 
00985 template<class ContainerAllocator>
00986 struct MD5Sum<tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
00987   static const char* value() 
00988   {
00989     return "9bb0e67d3827378f877a06e70c6e4b13";
00990   }
00991 
00992   static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 
00993 };
00994 
00995 template<class ContainerAllocator>
00996 struct DataType<tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> > {
00997   static const char* value() 
00998   {
00999     return "tabletop_collision_map_processing/TabletopCollisionMapProcessing";
01000   }
01001 
01002   static const char* value(const tabletop_collision_map_processing::TabletopCollisionMapProcessingResponse_<ContainerAllocator> &) { return value(); } 
01003 };
01004 
01005 } // namespace service_traits
01006 } // namespace ros
01007 
01008 #endif // TABLETOP_COLLISION_MAP_PROCESSING_SERVICE_TABLETOPCOLLISIONMAPPROCESSING_H
01009 


tabletop_collision_map_processing
Author(s): Matei Ciocarlie
autogenerated on Mon Oct 6 2014 11:47:36