00001 /* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Copyright (c) 2010, Willow Garage, Inc. 00005 * All rights reserved. 00006 * 00007 * Redistribution and use in source and binary forms, with or without 00008 * modification, are permitted provided that the following conditions 00009 * are met: 00010 * 00011 * * Redistributions of source code must retain the above copyright 00012 * notice, this list of conditions and the following disclaimer. 00013 * * Redistributions in binary form must reproduce the above 00014 * copyright notice, this list of conditions and the following 00015 * disclaimer in the documentation and/or other materials provided 00016 * with the distribution. 00017 * * Neither the name of Willow Garage, Inc. nor the names of its 00018 * contributors may be used to endorse or promote products derived 00019 * from this software without specific prior written permission. 00020 * 00021 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00022 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00023 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00024 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00025 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00026 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00027 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00028 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00029 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00030 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00031 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00032 * POSSIBILITY OF SUCH DAMAGE. 00033 * 00034 * $Id: nn_classification_example.cpp 6218 2012-07-06 21:46:51Z aichim $ 00035 * 00036 */ 00037 00038 #include <pcl/point_types.h> 00039 #include <pcl/io/pcd_io.h> 00040 #include <pcl/apps/vfh_nn_classifier.h> 00041 00042 int 00043 main (int, char* argv[]) 00044 { 00045 // Load input file 00046 char* file_name = argv[1]; 00047 sensor_msgs::PointCloud2 cloud_blob; 00048 pcl::io::loadPCDFile (file_name, cloud_blob); 00049 00050 // Declare variable to hold result 00051 pcl::NNClassification<pcl::VFHSignature308>::ResultPtr result; 00052 // same as: pcl::VFHClassifierNN::ResultPtr result; 00053 00054 // Do general classification using NNClassification or use the VHClassiierNN helper class 00055 if (false) 00056 { 00057 // Estimate your favorite feature 00058 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ()); 00059 pcl::fromROSMsg (cloud_blob, *cloud); 00061 pcl::PointCloud<pcl::VFHSignature308>::Ptr feature = pcl::computeVFH<pcl::PointXYZ> (cloud, 0.03); 00062 00063 // Nearest neighbors classification 00064 pcl::NNClassification<pcl::VFHSignature308> nn; 00065 //nn.setTrainingFeatures(cloud); 00066 //nn.setTrainingLabels(std::vector<std::string>(cloud->points.size(), "bla")); 00067 nn.loadTrainingFeatures (argv[2], argv[3]); 00068 result = nn.classify(feature->points[0], 300, 50); 00069 } 00070 else 00071 { 00072 pcl::VFHClassifierNN vfh_classifier; 00073 //vfh_classifier.loadTrainingData ("/home/marton/ros/pcl/trunk/apps/data/can.pcd", "can"); 00074 //vfh_classifier.loadTrainingData ("/home/marton/ros/pcl/trunk/apps/data/salt.pcd", "salt"); 00075 //vfh_classifier.loadTrainingData ("/home/marton/ros/pcl/trunk/apps/data/sugar.pcd", "sugar"); 00076 //vfh_classifier.saveTrainingFeatures ("/tmp/vfhs.pcd", "/tmp/vfhs.labels"); 00077 vfh_classifier.loadTrainingFeatures (argv[2], argv[3]); 00078 vfh_classifier.finalizeTraining (); 00079 result = vfh_classifier.classify(cloud_blob); 00080 } 00081 00082 // Print results 00083 for (unsigned i = 0; i < result->first.size(); ++i) 00084 std::cerr << result->first.at (i) << ": " << result->second.at (i) << std::endl; 00085 00086 return 0; 00087 }