Classes | Namespaces | Functions
extract_clusters.h File Reference
#include <pcl/pcl_base.h>
#include <pcl/search/pcl_search.h>
Include dependency graph for extract_clusters.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

class  pcl::EuclideanClusterExtraction< PointT >
 EuclideanClusterExtraction represents a segmentation class for cluster extraction in an Euclidean sense. More...

Namespaces

namespace  pcl

Functions

bool pcl::comparePointClusters (const pcl::PointIndices &a, const pcl::PointIndices &b)
 Sort clusters method (for std::sort).
template<typename PointT >
void pcl::extractEuclideanClusters (const PointCloud< PointT > &cloud, const boost::shared_ptr< search::Search< PointT > > &tree, float tolerance, std::vector< PointIndices > &clusters, unsigned int min_pts_per_cluster=1, unsigned int max_pts_per_cluster=(std::numeric_limits< int >::max)())
 Decompose a region of space into clusters based on the Euclidean distance between points.
template<typename PointT >
void pcl::extractEuclideanClusters (const PointCloud< PointT > &cloud, const std::vector< int > &indices, const boost::shared_ptr< search::Search< PointT > > &tree, float tolerance, std::vector< PointIndices > &clusters, unsigned int min_pts_per_cluster=1, unsigned int max_pts_per_cluster=(std::numeric_limits< int >::max)())
 Decompose a region of space into clusters based on the Euclidean distance between points.
template<typename PointT , typename Normal >
void pcl::extractEuclideanClusters (const PointCloud< PointT > &cloud, const PointCloud< Normal > &normals, float tolerance, const boost::shared_ptr< KdTree< PointT > > &tree, std::vector< PointIndices > &clusters, double eps_angle, unsigned int min_pts_per_cluster=1, unsigned int max_pts_per_cluster=(std::numeric_limits< int >::max)())
 Decompose a region of space into clusters based on the euclidean distance between points, and the normal angular deviation.
template<typename PointT , typename Normal >
void pcl::extractEuclideanClusters (const PointCloud< PointT > &cloud, const PointCloud< Normal > &normals, const std::vector< int > &indices, const boost::shared_ptr< KdTree< PointT > > &tree, float tolerance, std::vector< PointIndices > &clusters, double eps_angle, unsigned int min_pts_per_cluster=1, unsigned int max_pts_per_cluster=(std::numeric_limits< int >::max)())
 Decompose a region of space into clusters based on the euclidean distance between points, and the normal angular deviation.


pcl
Author(s): Open Perception
autogenerated on Mon Oct 6 2014 03:19:12