ReactiveLiftAction.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-groovy-object_manipulation/doc_stacks/2014-10-06_02-51-20.607186/object_manipulation/object_manipulation_msgs/msg/ReactiveLiftAction.msg */
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTION_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "object_manipulation_msgs/ReactiveLiftActionGoal.h"
00018 #include "object_manipulation_msgs/ReactiveLiftActionResult.h"
00019 #include "object_manipulation_msgs/ReactiveLiftActionFeedback.h"
00020 
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct ReactiveLiftAction_ {
00025   typedef ReactiveLiftAction_<ContainerAllocator> Type;
00026 
00027   ReactiveLiftAction_()
00028   : action_goal()
00029   , action_result()
00030   , action_feedback()
00031   {
00032   }
00033 
00034   ReactiveLiftAction_(const ContainerAllocator& _alloc)
00035   : action_goal(_alloc)
00036   , action_result(_alloc)
00037   , action_feedback(_alloc)
00038   {
00039   }
00040 
00041   typedef  ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator>  _action_goal_type;
00042    ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator>  action_goal;
00043 
00044   typedef  ::object_manipulation_msgs::ReactiveLiftActionResult_<ContainerAllocator>  _action_result_type;
00045    ::object_manipulation_msgs::ReactiveLiftActionResult_<ContainerAllocator>  action_result;
00046 
00047   typedef  ::object_manipulation_msgs::ReactiveLiftActionFeedback_<ContainerAllocator>  _action_feedback_type;
00048    ::object_manipulation_msgs::ReactiveLiftActionFeedback_<ContainerAllocator>  action_feedback;
00049 
00050 
00051   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > Ptr;
00052   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator>  const> ConstPtr;
00053   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 }; // struct ReactiveLiftAction
00055 typedef  ::object_manipulation_msgs::ReactiveLiftAction_<std::allocator<void> > ReactiveLiftAction;
00056 
00057 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction> ReactiveLiftActionPtr;
00058 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction const> ReactiveLiftActionConstPtr;
00059 
00060 
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const  ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> & v)
00063 {
00064   ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> >::stream(s, "", v);
00065   return s;}
00066 
00067 } // namespace object_manipulation_msgs
00068 
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator>  const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > {
00077   static const char* value() 
00078   {
00079     return "250abfc72d5db84d06b58224e8ab9c48";
00080   }
00081 
00082   static const char* value(const  ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> &) { return value(); } 
00083   static const uint64_t static_value1 = 0x250abfc72d5db84dULL;
00084   static const uint64_t static_value2 = 0x06b58224e8ab9c48ULL;
00085 };
00086 
00087 template<class ContainerAllocator>
00088 struct DataType< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > {
00089   static const char* value() 
00090   {
00091     return "object_manipulation_msgs/ReactiveLiftAction";
00092   }
00093 
00094   static const char* value(const  ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> &) { return value(); } 
00095 };
00096 
00097 template<class ContainerAllocator>
00098 struct Definition< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > {
00099   static const char* value() 
00100   {
00101     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 ReactiveLiftActionGoal action_goal\n\
00104 ReactiveLiftActionResult action_result\n\
00105 ReactiveLiftActionFeedback action_feedback\n\
00106 \n\
00107 ================================================================================\n\
00108 MSG: object_manipulation_msgs/ReactiveLiftActionGoal\n\
00109 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00110 \n\
00111 Header header\n\
00112 actionlib_msgs/GoalID goal_id\n\
00113 ReactiveLiftGoal goal\n\
00114 \n\
00115 ================================================================================\n\
00116 MSG: std_msgs/Header\n\
00117 # Standard metadata for higher-level stamped data types.\n\
00118 # This is generally used to communicate timestamped data \n\
00119 # in a particular coordinate frame.\n\
00120 # \n\
00121 # sequence ID: consecutively increasing ID \n\
00122 uint32 seq\n\
00123 #Two-integer timestamp that is expressed as:\n\
00124 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00125 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00126 # time-handling sugar is provided by the client library\n\
00127 time stamp\n\
00128 #Frame this data is associated with\n\
00129 # 0: no frame\n\
00130 # 1: global frame\n\
00131 string frame_id\n\
00132 \n\
00133 ================================================================================\n\
00134 MSG: actionlib_msgs/GoalID\n\
00135 # The stamp should store the time at which this goal was requested.\n\
00136 # It is used by an action server when it tries to preempt all\n\
00137 # goals that were requested before a certain time\n\
00138 time stamp\n\
00139 \n\
00140 # The id provides a way to associate feedback and\n\
00141 # result message with specific goal requests. The id\n\
00142 # specified must be unique.\n\
00143 string id\n\
00144 \n\
00145 \n\
00146 ================================================================================\n\
00147 MSG: object_manipulation_msgs/ReactiveLiftGoal\n\
00148 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00149 \n\
00150 # the name of the arm being used\n\
00151 string arm_name\n\
00152 \n\
00153 # the object to be grasped\n\
00154 manipulation_msgs/GraspableObject target\n\
00155 \n\
00156 # How the object should be lifted \n\
00157 GripperTranslation lift\n\
00158 \n\
00159 # the joint trajectory to use for the approach (if available)\n\
00160 # this trajectory is expected to start at the current pose of the gripper\n\
00161 # and end at the desired grasp pose\n\
00162 trajectory_msgs/JointTrajectory trajectory\n\
00163 \n\
00164 # the name of the support surface in the collision environment, if any\n\
00165 string collision_support_surface_name\n\
00166 \n\
00167 \n\
00168 ================================================================================\n\
00169 MSG: manipulation_msgs/GraspableObject\n\
00170 # an object that the object_manipulator can work on\n\
00171 \n\
00172 # a graspable object can be represented in multiple ways. This message\n\
00173 # can contain all of them. Which one is actually used is up to the receiver\n\
00174 # of this message. When adding new representations, one must be careful that\n\
00175 # they have reasonable lightweight defaults indicating that that particular\n\
00176 # representation is not available.\n\
00177 \n\
00178 # the tf frame to be used as a reference frame when combining information from\n\
00179 # the different representations below\n\
00180 string reference_frame_id\n\
00181 \n\
00182 # potential recognition results from a database of models\n\
00183 # all poses are relative to the object reference pose\n\
00184 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00185 \n\
00186 # the point cloud itself\n\
00187 sensor_msgs/PointCloud cluster\n\
00188 \n\
00189 # a region of a PointCloud2 of interest\n\
00190 SceneRegion region\n\
00191 \n\
00192 # the name that this object has in the collision environment\n\
00193 string collision_name\n\
00194 ================================================================================\n\
00195 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00196 # Informs that a specific model from the Model Database has been \n\
00197 # identified at a certain location\n\
00198 \n\
00199 # the database id of the model\n\
00200 int32 model_id\n\
00201 \n\
00202 # if the object was recognized by the ORK pipeline, its type will be in here\n\
00203 # if this is not empty, then the string in here will be converted to a household_objects_database id\n\
00204 # leave this empty if providing an id in the model_id field\n\
00205 object_recognition_msgs/ObjectType type\n\
00206 \n\
00207 # the pose that it can be found in\n\
00208 geometry_msgs/PoseStamped pose\n\
00209 \n\
00210 # a measure of the confidence level in this detection result\n\
00211 float32 confidence\n\
00212 \n\
00213 # the name of the object detector that generated this detection result\n\
00214 string detector_name\n\
00215 \n\
00216 ================================================================================\n\
00217 MSG: object_recognition_msgs/ObjectType\n\
00218 ################################################## OBJECT ID #########################################################\n\
00219 \n\
00220 # Contains information about the type of a found object. Those two sets of parameters together uniquely define an\n\
00221 # object\n\
00222 \n\
00223 # The key of the found object: the unique identifier in the given db\n\
00224 string key\n\
00225 \n\
00226 # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding\n\
00227 # database. E.g., in object_recognition, it can look like: \"{'type':'CouchDB', 'root':'http://localhost'}\"\n\
00228 # There is no conventional format for those parameters and it's nice to keep that flexibility.\n\
00229 # The object_recognition_core as a generic DB type that can read those fields\n\
00230 # Current examples:\n\
00231 # For CouchDB:\n\
00232 #   type: 'CouchDB'\n\
00233 #   root: 'http://localhost:5984'\n\
00234 #   collection: 'object_recognition'\n\
00235 # For SQL household database:\n\
00236 #   type: 'SqlHousehold'\n\
00237 #   host: 'wgs36'\n\
00238 #   port: 5432\n\
00239 #   user: 'willow'\n\
00240 #   password: 'willow'\n\
00241 #   name: 'household_objects'\n\
00242 #   module: 'tabletop'\n\
00243 string db\n\
00244 \n\
00245 ================================================================================\n\
00246 MSG: geometry_msgs/PoseStamped\n\
00247 # A Pose with reference coordinate frame and timestamp\n\
00248 Header header\n\
00249 Pose pose\n\
00250 \n\
00251 ================================================================================\n\
00252 MSG: geometry_msgs/Pose\n\
00253 # A representation of pose in free space, composed of postion and orientation. \n\
00254 Point position\n\
00255 Quaternion orientation\n\
00256 \n\
00257 ================================================================================\n\
00258 MSG: geometry_msgs/Point\n\
00259 # This contains the position of a point in free space\n\
00260 float64 x\n\
00261 float64 y\n\
00262 float64 z\n\
00263 \n\
00264 ================================================================================\n\
00265 MSG: geometry_msgs/Quaternion\n\
00266 # This represents an orientation in free space in quaternion form.\n\
00267 \n\
00268 float64 x\n\
00269 float64 y\n\
00270 float64 z\n\
00271 float64 w\n\
00272 \n\
00273 ================================================================================\n\
00274 MSG: sensor_msgs/PointCloud\n\
00275 # This message holds a collection of 3d points, plus optional additional\n\
00276 # information about each point.\n\
00277 \n\
00278 # Time of sensor data acquisition, coordinate frame ID.\n\
00279 Header header\n\
00280 \n\
00281 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00282 # in the frame given in the header.\n\
00283 geometry_msgs/Point32[] points\n\
00284 \n\
00285 # Each channel should have the same number of elements as points array,\n\
00286 # and the data in each channel should correspond 1:1 with each point.\n\
00287 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00288 ChannelFloat32[] channels\n\
00289 \n\
00290 ================================================================================\n\
00291 MSG: geometry_msgs/Point32\n\
00292 # This contains the position of a point in free space(with 32 bits of precision).\n\
00293 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00294 # \n\
00295 # This recommendation is to promote interoperability.  \n\
00296 #\n\
00297 # This message is designed to take up less space when sending\n\
00298 # lots of points at once, as in the case of a PointCloud.  \n\
00299 \n\
00300 float32 x\n\
00301 float32 y\n\
00302 float32 z\n\
00303 ================================================================================\n\
00304 MSG: sensor_msgs/ChannelFloat32\n\
00305 # This message is used by the PointCloud message to hold optional data\n\
00306 # associated with each point in the cloud. The length of the values\n\
00307 # array should be the same as the length of the points array in the\n\
00308 # PointCloud, and each value should be associated with the corresponding\n\
00309 # point.\n\
00310 \n\
00311 # Channel names in existing practice include:\n\
00312 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00313 #              This is opposite to usual conventions but remains for\n\
00314 #              historical reasons. The newer PointCloud2 message has no\n\
00315 #              such problem.\n\
00316 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00317 #           (R,G,B) values packed into the least significant 24 bits,\n\
00318 #           in order.\n\
00319 #   \"intensity\" - laser or pixel intensity.\n\
00320 #   \"distance\"\n\
00321 \n\
00322 # The channel name should give semantics of the channel (e.g.\n\
00323 # \"intensity\" instead of \"value\").\n\
00324 string name\n\
00325 \n\
00326 # The values array should be 1-1 with the elements of the associated\n\
00327 # PointCloud.\n\
00328 float32[] values\n\
00329 \n\
00330 ================================================================================\n\
00331 MSG: manipulation_msgs/SceneRegion\n\
00332 # Point cloud\n\
00333 sensor_msgs/PointCloud2 cloud\n\
00334 \n\
00335 # Indices for the region of interest\n\
00336 int32[] mask\n\
00337 \n\
00338 # One of the corresponding 2D images, if applicable\n\
00339 sensor_msgs/Image image\n\
00340 \n\
00341 # The disparity image, if applicable\n\
00342 sensor_msgs/Image disparity_image\n\
00343 \n\
00344 # Camera info for the camera that took the image\n\
00345 sensor_msgs/CameraInfo cam_info\n\
00346 \n\
00347 # a 3D region of interest for grasp planning\n\
00348 geometry_msgs/PoseStamped  roi_box_pose\n\
00349 geometry_msgs/Vector3      roi_box_dims\n\
00350 \n\
00351 ================================================================================\n\
00352 MSG: sensor_msgs/PointCloud2\n\
00353 # This message holds a collection of N-dimensional points, which may\n\
00354 # contain additional information such as normals, intensity, etc. The\n\
00355 # point data is stored as a binary blob, its layout described by the\n\
00356 # contents of the \"fields\" array.\n\
00357 \n\
00358 # The point cloud data may be organized 2d (image-like) or 1d\n\
00359 # (unordered). Point clouds organized as 2d images may be produced by\n\
00360 # camera depth sensors such as stereo or time-of-flight.\n\
00361 \n\
00362 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00363 # points).\n\
00364 Header header\n\
00365 \n\
00366 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00367 # 1 and width is the length of the point cloud.\n\
00368 uint32 height\n\
00369 uint32 width\n\
00370 \n\
00371 # Describes the channels and their layout in the binary data blob.\n\
00372 PointField[] fields\n\
00373 \n\
00374 bool    is_bigendian # Is this data bigendian?\n\
00375 uint32  point_step   # Length of a point in bytes\n\
00376 uint32  row_step     # Length of a row in bytes\n\
00377 uint8[] data         # Actual point data, size is (row_step*height)\n\
00378 \n\
00379 bool is_dense        # True if there are no invalid points\n\
00380 \n\
00381 ================================================================================\n\
00382 MSG: sensor_msgs/PointField\n\
00383 # This message holds the description of one point entry in the\n\
00384 # PointCloud2 message format.\n\
00385 uint8 INT8    = 1\n\
00386 uint8 UINT8   = 2\n\
00387 uint8 INT16   = 3\n\
00388 uint8 UINT16  = 4\n\
00389 uint8 INT32   = 5\n\
00390 uint8 UINT32  = 6\n\
00391 uint8 FLOAT32 = 7\n\
00392 uint8 FLOAT64 = 8\n\
00393 \n\
00394 string name      # Name of field\n\
00395 uint32 offset    # Offset from start of point struct\n\
00396 uint8  datatype  # Datatype enumeration, see above\n\
00397 uint32 count     # How many elements in the field\n\
00398 \n\
00399 ================================================================================\n\
00400 MSG: sensor_msgs/Image\n\
00401 # This message contains an uncompressed image\n\
00402 # (0, 0) is at top-left corner of image\n\
00403 #\n\
00404 \n\
00405 Header header        # Header timestamp should be acquisition time of image\n\
00406                      # Header frame_id should be optical frame of camera\n\
00407                      # origin of frame should be optical center of cameara\n\
00408                      # +x should point to the right in the image\n\
00409                      # +y should point down in the image\n\
00410                      # +z should point into to plane of the image\n\
00411                      # If the frame_id here and the frame_id of the CameraInfo\n\
00412                      # message associated with the image conflict\n\
00413                      # the behavior is undefined\n\
00414 \n\
00415 uint32 height         # image height, that is, number of rows\n\
00416 uint32 width          # image width, that is, number of columns\n\
00417 \n\
00418 # The legal values for encoding are in file src/image_encodings.cpp\n\
00419 # If you want to standardize a new string format, join\n\
00420 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00421 \n\
00422 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00423                       # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00424 \n\
00425 uint8 is_bigendian    # is this data bigendian?\n\
00426 uint32 step           # Full row length in bytes\n\
00427 uint8[] data          # actual matrix data, size is (step * rows)\n\
00428 \n\
00429 ================================================================================\n\
00430 MSG: sensor_msgs/CameraInfo\n\
00431 # This message defines meta information for a camera. It should be in a\n\
00432 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00433 # image topics named:\n\
00434 #\n\
00435 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00436 #   image            - monochrome, distorted\n\
00437 #   image_color      - color, distorted\n\
00438 #   image_rect       - monochrome, rectified\n\
00439 #   image_rect_color - color, rectified\n\
00440 #\n\
00441 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00442 # for producing the four processed image topics from image_raw and\n\
00443 # camera_info. The meaning of the camera parameters are described in\n\
00444 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00445 #\n\
00446 # The image_geometry package provides a user-friendly interface to\n\
00447 # common operations using this meta information. If you want to, e.g.,\n\
00448 # project a 3d point into image coordinates, we strongly recommend\n\
00449 # using image_geometry.\n\
00450 #\n\
00451 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00452 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00453 # indicates an uncalibrated camera.\n\
00454 \n\
00455 #######################################################################\n\
00456 #                     Image acquisition info                          #\n\
00457 #######################################################################\n\
00458 \n\
00459 # Time of image acquisition, camera coordinate frame ID\n\
00460 Header header    # Header timestamp should be acquisition time of image\n\
00461                  # Header frame_id should be optical frame of camera\n\
00462                  # origin of frame should be optical center of camera\n\
00463                  # +x should point to the right in the image\n\
00464                  # +y should point down in the image\n\
00465                  # +z should point into the plane of the image\n\
00466 \n\
00467 \n\
00468 #######################################################################\n\
00469 #                      Calibration Parameters                         #\n\
00470 #######################################################################\n\
00471 # These are fixed during camera calibration. Their values will be the #\n\
00472 # same in all messages until the camera is recalibrated. Note that    #\n\
00473 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00474 #                                                                     #\n\
00475 # The internal parameters can be used to warp a raw (distorted) image #\n\
00476 # to:                                                                 #\n\
00477 #   1. An undistorted image (requires D and K)                        #\n\
00478 #   2. A rectified image (requires D, K, R)                           #\n\
00479 # The projection matrix P projects 3D points into the rectified image.#\n\
00480 #######################################################################\n\
00481 \n\
00482 # The image dimensions with which the camera was calibrated. Normally\n\
00483 # this will be the full camera resolution in pixels.\n\
00484 uint32 height\n\
00485 uint32 width\n\
00486 \n\
00487 # The distortion model used. Supported models are listed in\n\
00488 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00489 # simple model of radial and tangential distortion - is sufficent.\n\
00490 string distortion_model\n\
00491 \n\
00492 # The distortion parameters, size depending on the distortion model.\n\
00493 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00494 float64[] D\n\
00495 \n\
00496 # Intrinsic camera matrix for the raw (distorted) images.\n\
00497 #     [fx  0 cx]\n\
00498 # K = [ 0 fy cy]\n\
00499 #     [ 0  0  1]\n\
00500 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00501 # coordinates using the focal lengths (fx, fy) and principal point\n\
00502 # (cx, cy).\n\
00503 float64[9]  K # 3x3 row-major matrix\n\
00504 \n\
00505 # Rectification matrix (stereo cameras only)\n\
00506 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00507 # stereo image plane so that epipolar lines in both stereo images are\n\
00508 # parallel.\n\
00509 float64[9]  R # 3x3 row-major matrix\n\
00510 \n\
00511 # Projection/camera matrix\n\
00512 #     [fx'  0  cx' Tx]\n\
00513 # P = [ 0  fy' cy' Ty]\n\
00514 #     [ 0   0   1   0]\n\
00515 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00516 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00517 #  is the normal camera intrinsic matrix for the rectified image.\n\
00518 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00519 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00520 #  (cx', cy') - these may differ from the values in K.\n\
00521 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00522 #  also have R = the identity and P[1:3,1:3] = K.\n\
00523 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00524 #  position of the optical center of the second camera in the first\n\
00525 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00526 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00527 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00528 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00529 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00530 #  the rectified image is given by:\n\
00531 #  [u v w]' = P * [X Y Z 1]'\n\
00532 #         x = u / w\n\
00533 #         y = v / w\n\
00534 #  This holds for both images of a stereo pair.\n\
00535 float64[12] P # 3x4 row-major matrix\n\
00536 \n\
00537 \n\
00538 #######################################################################\n\
00539 #                      Operational Parameters                         #\n\
00540 #######################################################################\n\
00541 # These define the image region actually captured by the camera       #\n\
00542 # driver. Although they affect the geometry of the output image, they #\n\
00543 # may be changed freely without recalibrating the camera.             #\n\
00544 #######################################################################\n\
00545 \n\
00546 # Binning refers here to any camera setting which combines rectangular\n\
00547 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00548 #  resolution of the output image to\n\
00549 #  (width / binning_x) x (height / binning_y).\n\
00550 # The default values binning_x = binning_y = 0 is considered the same\n\
00551 #  as binning_x = binning_y = 1 (no subsampling).\n\
00552 uint32 binning_x\n\
00553 uint32 binning_y\n\
00554 \n\
00555 # Region of interest (subwindow of full camera resolution), given in\n\
00556 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00557 #  always denotes the same window of pixels on the camera sensor,\n\
00558 #  regardless of binning settings.\n\
00559 # The default setting of roi (all values 0) is considered the same as\n\
00560 #  full resolution (roi.width = width, roi.height = height).\n\
00561 RegionOfInterest roi\n\
00562 \n\
00563 ================================================================================\n\
00564 MSG: sensor_msgs/RegionOfInterest\n\
00565 # This message is used to specify a region of interest within an image.\n\
00566 #\n\
00567 # When used to specify the ROI setting of the camera when the image was\n\
00568 # taken, the height and width fields should either match the height and\n\
00569 # width fields for the associated image; or height = width = 0\n\
00570 # indicates that the full resolution image was captured.\n\
00571 \n\
00572 uint32 x_offset  # Leftmost pixel of the ROI\n\
00573                  # (0 if the ROI includes the left edge of the image)\n\
00574 uint32 y_offset  # Topmost pixel of the ROI\n\
00575                  # (0 if the ROI includes the top edge of the image)\n\
00576 uint32 height    # Height of ROI\n\
00577 uint32 width     # Width of ROI\n\
00578 \n\
00579 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00580 # ROI in this message. Typically this should be False if the full image\n\
00581 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00582 # used).\n\
00583 bool do_rectify\n\
00584 \n\
00585 ================================================================================\n\
00586 MSG: geometry_msgs/Vector3\n\
00587 # This represents a vector in free space. \n\
00588 \n\
00589 float64 x\n\
00590 float64 y\n\
00591 float64 z\n\
00592 ================================================================================\n\
00593 MSG: object_manipulation_msgs/GripperTranslation\n\
00594 # defines a translation for the gripper, used in pickup or place tasks\n\
00595 # for example for lifting an object off a table or approaching the table for placing\n\
00596 \n\
00597 # the direction of the translation\n\
00598 geometry_msgs/Vector3Stamped direction\n\
00599 \n\
00600 # the desired translation distance\n\
00601 float32 desired_distance\n\
00602 \n\
00603 # the min distance that must be considered feasible before the\n\
00604 # grasp is even attempted\n\
00605 float32 min_distance\n\
00606 ================================================================================\n\
00607 MSG: geometry_msgs/Vector3Stamped\n\
00608 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00609 Header header\n\
00610 Vector3 vector\n\
00611 \n\
00612 ================================================================================\n\
00613 MSG: trajectory_msgs/JointTrajectory\n\
00614 Header header\n\
00615 string[] joint_names\n\
00616 JointTrajectoryPoint[] points\n\
00617 ================================================================================\n\
00618 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00619 float64[] positions\n\
00620 float64[] velocities\n\
00621 float64[] accelerations\n\
00622 duration time_from_start\n\
00623 ================================================================================\n\
00624 MSG: object_manipulation_msgs/ReactiveLiftActionResult\n\
00625 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00626 \n\
00627 Header header\n\
00628 actionlib_msgs/GoalStatus status\n\
00629 ReactiveLiftResult result\n\
00630 \n\
00631 ================================================================================\n\
00632 MSG: actionlib_msgs/GoalStatus\n\
00633 GoalID goal_id\n\
00634 uint8 status\n\
00635 uint8 PENDING         = 0   # The goal has yet to be processed by the action server\n\
00636 uint8 ACTIVE          = 1   # The goal is currently being processed by the action server\n\
00637 uint8 PREEMPTED       = 2   # The goal received a cancel request after it started executing\n\
00638                             #   and has since completed its execution (Terminal State)\n\
00639 uint8 SUCCEEDED       = 3   # The goal was achieved successfully by the action server (Terminal State)\n\
00640 uint8 ABORTED         = 4   # The goal was aborted during execution by the action server due\n\
00641                             #    to some failure (Terminal State)\n\
00642 uint8 REJECTED        = 5   # The goal was rejected by the action server without being processed,\n\
00643                             #    because the goal was unattainable or invalid (Terminal State)\n\
00644 uint8 PREEMPTING      = 6   # The goal received a cancel request after it started executing\n\
00645                             #    and has not yet completed execution\n\
00646 uint8 RECALLING       = 7   # The goal received a cancel request before it started executing,\n\
00647                             #    but the action server has not yet confirmed that the goal is canceled\n\
00648 uint8 RECALLED        = 8   # The goal received a cancel request before it started executing\n\
00649                             #    and was successfully cancelled (Terminal State)\n\
00650 uint8 LOST            = 9   # An action client can determine that a goal is LOST. This should not be\n\
00651                             #    sent over the wire by an action server\n\
00652 \n\
00653 #Allow for the user to associate a string with GoalStatus for debugging\n\
00654 string text\n\
00655 \n\
00656 \n\
00657 ================================================================================\n\
00658 MSG: object_manipulation_msgs/ReactiveLiftResult\n\
00659 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00660 \n\
00661 # The result of the lift attempt\n\
00662 ManipulationResult manipulation_result\n\
00663 \n\
00664 \n\
00665 ================================================================================\n\
00666 MSG: object_manipulation_msgs/ManipulationResult\n\
00667 # Result codes for manipulation tasks\n\
00668 \n\
00669 # task completed as expected\n\
00670 # generally means you can proceed as planned\n\
00671 int32 SUCCESS = 1\n\
00672 \n\
00673 # task not possible (e.g. out of reach or obstacles in the way)\n\
00674 # generally means that the world was not disturbed, so you can try another task\n\
00675 int32 UNFEASIBLE = -1\n\
00676 \n\
00677 # task was thought possible, but failed due to unexpected events during execution\n\
00678 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00679 # your sensed world model before proceeding to another task\n\
00680 int32 FAILED = -2\n\
00681 \n\
00682 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00683 # generally requires human attention\n\
00684 int32 ERROR = -3\n\
00685 \n\
00686 # means that at some point during execution we ended up in a state that the collision-aware\n\
00687 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00688 # probably need a new collision map to move the arm out of the stuck position\n\
00689 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00690 \n\
00691 # specific to grasp actions\n\
00692 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00693 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00694 int32 LIFT_FAILED = -5\n\
00695 \n\
00696 # specific to place actions\n\
00697 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00698 # it is likely that the collision environment will see collisions between the hand and the object\n\
00699 int32 RETREAT_FAILED = -6\n\
00700 \n\
00701 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00702 int32 CANCELLED = -7\n\
00703 \n\
00704 # the actual value of this error code\n\
00705 int32 value\n\
00706 \n\
00707 ================================================================================\n\
00708 MSG: object_manipulation_msgs/ReactiveLiftActionFeedback\n\
00709 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00710 \n\
00711 Header header\n\
00712 actionlib_msgs/GoalStatus status\n\
00713 ReactiveLiftFeedback feedback\n\
00714 \n\
00715 ================================================================================\n\
00716 MSG: object_manipulation_msgs/ReactiveLiftFeedback\n\
00717 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00718 \n\
00719 # Which phase the lift is in\n\
00720 \n\
00721 ManipulationPhase manipulation_phase\n\
00722 \n\
00723 \n\
00724 \n\
00725 ================================================================================\n\
00726 MSG: object_manipulation_msgs/ManipulationPhase\n\
00727 int32 CHECKING_FEASIBILITY = 0\n\
00728 int32 MOVING_TO_PREGRASP = 1\n\
00729 int32 MOVING_TO_GRASP = 2\n\
00730 int32 CLOSING = 3 \n\
00731 int32 ADJUSTING_GRASP = 4\n\
00732 int32 LIFTING = 5\n\
00733 int32 MOVING_WITH_OBJECT = 6\n\
00734 int32 MOVING_TO_PLACE = 7\n\
00735 int32 PLACING = 8\n\
00736 int32 OPENING = 9\n\
00737 int32 RETREATING = 10\n\
00738 int32 MOVING_WITHOUT_OBJECT = 11\n\
00739 int32 SHAKING = 12\n\
00740 int32 SUCCEEDED = 13\n\
00741 int32 FAILED = 14\n\
00742 int32 ABORTED = 15\n\
00743 int32 HOLDING_OBJECT = 16\n\
00744 \n\
00745 int32 phase\n\
00746 ";
00747   }
00748 
00749   static const char* value(const  ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> &) { return value(); } 
00750 };
00751 
00752 } // namespace message_traits
00753 } // namespace ros
00754 
00755 namespace ros
00756 {
00757 namespace serialization
00758 {
00759 
00760 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> >
00761 {
00762   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00763   {
00764     stream.next(m.action_goal);
00765     stream.next(m.action_result);
00766     stream.next(m.action_feedback);
00767   }
00768 
00769   ROS_DECLARE_ALLINONE_SERIALIZER;
00770 }; // struct ReactiveLiftAction_
00771 } // namespace serialization
00772 } // namespace ros
00773 
00774 namespace ros
00775 {
00776 namespace message_operations
00777 {
00778 
00779 template<class ContainerAllocator>
00780 struct Printer< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> >
00781 {
00782   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> & v) 
00783   {
00784     s << indent << "action_goal: ";
00785 s << std::endl;
00786     Printer< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> >::stream(s, indent + "  ", v.action_goal);
00787     s << indent << "action_result: ";
00788 s << std::endl;
00789     Printer< ::object_manipulation_msgs::ReactiveLiftActionResult_<ContainerAllocator> >::stream(s, indent + "  ", v.action_result);
00790     s << indent << "action_feedback: ";
00791 s << std::endl;
00792     Printer< ::object_manipulation_msgs::ReactiveLiftActionFeedback_<ContainerAllocator> >::stream(s, indent + "  ", v.action_feedback);
00793   }
00794 };
00795 
00796 
00797 } // namespace message_operations
00798 } // namespace ros
00799 
00800 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTION_H
00801 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Mon Oct 6 2014 02:58:12