00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00066
00067 static const char rcsid[] = "$Id: quaternion.cpp,v 1.18 2005/11/15 19:25:58 gourdeau Exp $";
00068
00069 #include "quaternion.h"
00070
00071 #ifdef use_namespace
00072 namespace ROBOOP {
00073 using namespace NEWMAT;
00074 #endif
00075
00076
00077 Quaternion::Quaternion()
00079 {
00080 s_ = 1.0;
00081 v_ = ColumnVector(3);
00082 v_ = 0.0;
00083 }
00084
00085 Quaternion::Quaternion(const Real angle, const ColumnVector & axis)
00087 {
00088 if(axis.Nrows() != 3)
00089 {
00090 cerr << "Quaternion::Quaternion, size of axis != 3" << endl;
00091 exit(1);
00092 }
00093
00094
00095 Real norm_axis = sqrt(DotProduct(axis, axis));
00096
00097 if(norm_axis != 1)
00098 {
00099 cerr << "Quaternion::Quaternion(angle, axis), axis is not unit" << endl;
00100 cerr << "Make the axis unit." << endl;
00101 v_ = sin(angle/2) * axis/norm_axis;
00102 }
00103 else
00104 v_ = sin(angle/2) * axis;
00105
00106 s_ = cos(angle/2);
00107 }
00108
00109 Quaternion::Quaternion(const Real s_in, const Real v1, const Real v2,
00110 const Real v3)
00112 {
00113 s_ = s_in;
00114 v_ = ColumnVector(3);
00115 v_(1) = v1;
00116 v_(2) = v2;
00117 v_(3) = v3;
00118 }
00119
00120 Quaternion::Quaternion(const Matrix & R)
00161 {
00162 if( (R.Nrows() == 3) && (R.Ncols() == 3) ||
00163 (R.Nrows() == 4) && (R.Ncols() == 4) )
00164 {
00165 Real tmp = fabs(R(1,1) + R(2,2) + R(3,3) + 1);
00166 s_ = 0.5*sqrt(tmp);
00167 if(v_.Nrows() != 3)
00168 v_ = ColumnVector(3);
00169
00170 if(s_ > EPSILON)
00171 {
00172 v_(1) = (R(3,2)-R(2,3))/(4*s_);
00173 v_(2) = (R(1,3)-R(3,1))/(4*s_);
00174 v_(3) = (R(2,1)-R(1,2))/(4*s_);
00175 }
00176 else
00177 {
00178
00179 static int s_iNext[3] = { 2, 3, 1 };
00180 int i = 1;
00181 if ( R(2,2) > R(1,1) )
00182 i = 2;
00183 if ( R(3,3) > R(2,2) )
00184 i = 3;
00185 int j = s_iNext[i-1];
00186 int k = s_iNext[j-1];
00187
00188 Real fRoot = sqrt(R(i,i)-R(j,j)-R(k,k) + 1.0);
00189
00190 Real *tmp[3] = { &v_(1), &v_(2), &v_(3) };
00191 *tmp[i-1] = 0.5*fRoot;
00192 fRoot = 0.5/fRoot;
00193 s_ = (R(k,j)-R(j,k))*fRoot;
00194 *tmp[j-1] = (R(j,i)+R(i,j))*fRoot;
00195 *tmp[k-1] = (R(k,i)+R(i,k))*fRoot;
00196 }
00197
00198 }
00199 else
00200 cerr << "Quaternion::Quaternion: matrix input is not 3x3 or 4x4" << endl;
00201 }
00202
00203 Quaternion Quaternion::operator+(const Quaternion & rhs)const
00215 {
00216 Quaternion q;
00217 q.s_ = s_ + rhs.s_;
00218 q.v_ = v_ + rhs.v_;
00219
00220 return q;
00221 }
00222
00223 Quaternion Quaternion::operator-(const Quaternion & rhs)const
00235 {
00236 Quaternion q;
00237 q.s_ = s_ - rhs.s_;
00238 q.v_ = v_ - rhs.v_;
00239
00240 return q;
00241 }
00242
00243 Quaternion Quaternion::operator*(const Quaternion & rhs)const
00258 {
00259 Quaternion q;
00260 q.s_ = s_ * rhs.s_ - DotProduct(v_, rhs.v_);
00261 q.v_ = s_ * rhs.v_ + rhs.s_ * v_ + CrossProduct(v_, rhs.v_);
00262
00263 return q;
00264 }
00265
00266
00267 Quaternion Quaternion::operator/(const Quaternion & rhs)const
00269 {
00270 return *this*rhs.i();
00271 }
00272
00273
00274 void Quaternion::set_v(const ColumnVector & v)
00276 {
00277 if(v.Nrows() == 3)
00278 v_ = v;
00279 else
00280 cerr << "Quaternion::set_v: input has a wrong size." << endl;
00281 }
00282
00283 Quaternion Quaternion::conjugate()const
00290 {
00291 Quaternion q;
00292 q.s_ = s_;
00293 q.v_ = -1*v_;
00294
00295 return q;
00296 }
00297
00298 Real Quaternion::norm()const
00307 {
00308 return( sqrt(s_*s_ + DotProduct(v_, v_)) );
00309 }
00310
00311 Quaternion & Quaternion::unit()
00313 {
00314 Real tmp = norm();
00315 if(tmp > EPSILON)
00316 {
00317 s_ = s_/tmp;
00318 v_ = v_/tmp;
00319 }
00320 return *this;
00321 }
00322
00323 Quaternion Quaternion::i()const
00332 {
00333 return conjugate()/norm();
00334 }
00335
00336 Quaternion Quaternion::exp() const
00344 {
00345 Quaternion q;
00346 Real theta = sqrt(DotProduct(v_,v_)),
00347 sin_theta = sin(theta);
00348
00349 q.s_ = cos(theta);
00350 if ( fabs(sin_theta) > EPSILON)
00351 q.v_ = v_*sin_theta/theta;
00352 else
00353 q.v_ = v_;
00354
00355 return q;
00356 }
00357
00358 Quaternion Quaternion::power(const Real t) const
00359 {
00360 Quaternion q = (Log()*t).exp();
00361
00362 return q;
00363 }
00364
00365 Quaternion Quaternion::Log()const
00374 {
00375 Quaternion q;
00376 q.s_ = 0;
00377 Real theta = acos(s_),
00378 sin_theta = sin(theta);
00379
00380 if ( fabs(sin_theta) > EPSILON)
00381 q.v_ = v_/sin_theta*theta;
00382 else
00383 q.v_ = v_;
00384
00385 return q;
00386 }
00387
00388 Quaternion Quaternion::dot(const ColumnVector & w, const short sign)const
00415 {
00416 Quaternion q;
00417 Matrix tmp;
00418
00419 tmp = -0.5*v_.t()*w;
00420 q.s_ = tmp(1,1);
00421 q.v_ = 0.5*E(sign)*w;
00422
00423 return q;
00424 }
00425
00426 ReturnMatrix Quaternion::E(const short sign)const
00432 {
00433 Matrix E(3,3), I(3,3);
00434 I << threebythreeident;
00435
00436 if(sign == BODY_FRAME)
00437 E = s_*I + x_prod_matrix(v_);
00438 else
00439 E = s_*I - x_prod_matrix(v_);
00440
00441 E.Release();
00442 return E;
00443 }
00444
00445 Real Quaternion::dot_prod(const Quaternion & q)const
00454 {
00455 return (s_*q.s_ + v_(1)*q.v_(1) + v_(2)*q.v_(2) + v_(3)*q.v_(3));
00456 }
00457
00458 ReturnMatrix Quaternion::R()const
00490 {
00491 Matrix R(3,3);
00492 R << threebythreeident;
00493 R = (1 - 2*DotProduct(v_, v_))*R + 2*v_*v_.t() + 2*s_*x_prod_matrix(v_);
00494
00495 R.Release();
00496 return R;
00497 }
00498
00499 ReturnMatrix Quaternion::T()const
00505 {
00506 Matrix T(4,4);
00507 T << fourbyfourident;
00508 T.SubMatrix(1,3,1,3) = (1 - 2*DotProduct(v_, v_))*T.SubMatrix(1,3,1,3)
00509 + 2*v_*v_.t() + 2*s_*x_prod_matrix(v_);
00510 T.Release();
00511 return T;
00512 }
00513
00514
00515
00516 Quaternion operator*(const Real c, const Quaternion & q)
00526 {
00527 Quaternion out;
00528 out.set_s(q.s() * c);
00529 out.set_v(q.v() * c);
00530 return out;
00531 }
00532
00533 Quaternion operator*(const Quaternion & q, const Real c)
00537 {
00538 return operator*(c, q);
00539 }
00540
00541
00542 Quaternion operator/(const Real c, const Quaternion & q)
00548 {
00549 Quaternion out;
00550 out.set_s(q.s() / c);
00551 out.set_v(q.v() / c);
00552 return out;
00553 }
00554
00555 Quaternion operator/(const Quaternion & q, const Real c)
00556 {
00557 return operator/(c, q);
00558 }
00559
00560 ReturnMatrix Omega(const Quaternion & q, const Quaternion & q_dot)
00566 {
00567 Matrix A, B, M;
00568 UpperTriangularMatrix U;
00569 ColumnVector w(3);
00570 A = 0.5*q.E(BASE_FRAME);
00571 B = q_dot.v();
00572 if(A.Determinant())
00573 {
00574 QRZ(A,U);
00575 QRZ(A,B,M);
00576 w = U.i()*M;
00577 }
00578 else
00579 w = 0;
00580
00581 w.Release();
00582 return w;
00583 }
00584
00585 short Integ_quat(Quaternion & dquat_present, Quaternion & dquat_past,
00586 Quaternion & quat, const Real dt)
00588 {
00589 if (dt < 0)
00590 {
00591 cerr << "Integ_Trap(quat1, quat2, dt): dt < 0. dt is set to 0." << endl;
00592 return -1;
00593 }
00594
00595
00596
00597
00598 dquat_present.set_s(dquat_present.s() );
00599 dquat_present.set_v(dquat_present.v() );
00600
00601 quat.set_s(quat.s() + Integ_Trap_quat_s(dquat_present, dquat_past, dt));
00602 quat.set_v(quat.v() + Integ_Trap_quat_v(dquat_present, dquat_past, dt));
00603
00604 dquat_past.set_s(dquat_present.s());
00605 dquat_past.set_v(dquat_present.v());
00606
00607 quat.unit();
00608
00609 return 0;
00610 }
00611
00612 Real Integ_Trap_quat_s(const Quaternion & present, Quaternion & past,
00613 const Real dt)
00615 {
00616 Real integ = 0.5*(present.s()+past.s())*dt;
00617 past.set_s(present.s());
00618 return integ;
00619 }
00620
00621 ReturnMatrix Integ_Trap_quat_v(const Quaternion & present, Quaternion & past,
00622 const Real dt)
00624 {
00625 ColumnVector integ = 0.5*(present.v()+past.v())*dt;
00626 past.set_v(present.v());
00627 integ.Release();
00628 return integ;
00629 }
00630
00631 Quaternion Slerp(const Quaternion & q0, const Quaternion & q1, const Real t)
00682 {
00683 if( (t < 0) || (t > 1) )
00684 cerr << "Slerp(q0, q1, t): t < 0 or t > 1. t is set to 0." << endl;
00685
00686 if(q0.dot_prod(q1) >= 0)
00687 return q0*((q0.i()*q1).power(t));
00688 else
00689 return q0*((q0.i()*-1*q1).power(t));
00690 }
00691
00692 Quaternion Slerp_prime(const Quaternion & q0, const Quaternion & q1,
00693 const Real t)
00715 {
00716 if( (t < 0) || (t > 1) )
00717 cerr << "Slerp_prime(q0, q1, t): t < 0 or t > 1. t is set to 0." << endl;
00718
00719 if(q0.dot_prod(q1) >= 0)
00720 return Slerp(q0, q1, t)*(q0.i()*q1).Log();
00721 else
00722 return Slerp(q0, q1, t)*(q0.i()*-1*q1).Log();
00723 }
00724
00725 Quaternion Squad(const Quaternion & p, const Quaternion & a, const Quaternion & b,
00726 const Quaternion & q, const Real t)
00744 {
00745 if( (t < 0) || (t > 1) )
00746 cerr << "Squad(p,a,b,q, t): t < 0 or t > 1. t is set to 0." << endl;
00747
00748 return Slerp(Slerp(p,q,t),Slerp(a,b,t),2*t*(1-t));
00749 }
00750
00751 Quaternion Squad_prime(const Quaternion & p, const Quaternion & a, const Quaternion & b,
00752 const Quaternion & q, const Real t)
00793 {
00794 if( (t < 0) || (t > 1) )
00795 cerr << "Squad_prime(p,a,b,q, t): t < 0 or t > 1. t is set to 0." << endl;
00796
00797 Quaternion q_squad,
00798 U = Slerp(p, q, t),
00799 V = Slerp(a, b, t),
00800 W = U.i()*V,
00801 U_prime = U*(p.i()*q).Log(),
00802 V_prime = V*(a.i()*b).Log(),
00803 W_prime = U.i()*V_prime - U.power(-2)*U_prime*V;
00804
00805 q_squad = U*( W.power(2*t*(1-t))*W.Log()*(2-4*t) + W.power(2*t*(1-t)-1)*W_prime*2*t*(1-t) )
00806 + U_prime*( W.power(2*t*(1-t)) );
00807
00808 return q_squad;
00809 }
00810
00811 #ifdef use_namespace
00812 }
00813 #endif
00814
00815
00816
00817
00818
00819