ImagePercept.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-groovy-hector_worldmodel/doc_stacks/2014-10-06_00-33-41.120387/hector_worldmodel/hector_worldmodel_msgs/msg/ImagePercept.msg */
00002 #ifndef HECTOR_WORLDMODEL_MSGS_MESSAGE_IMAGEPERCEPT_H
00003 #define HECTOR_WORLDMODEL_MSGS_MESSAGE_IMAGEPERCEPT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "std_msgs/Header.h"
00018 #include "sensor_msgs/CameraInfo.h"
00019 #include "hector_worldmodel_msgs/PerceptInfo.h"
00020 
00021 namespace hector_worldmodel_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct ImagePercept_ {
00025   typedef ImagePercept_<ContainerAllocator> Type;
00026 
00027   ImagePercept_()
00028   : header()
00029   , camera_info()
00030   , x(0.0)
00031   , y(0.0)
00032   , width(0.0)
00033   , height(0.0)
00034   , distance(0.0)
00035   , info()
00036   {
00037   }
00038 
00039   ImagePercept_(const ContainerAllocator& _alloc)
00040   : header(_alloc)
00041   , camera_info(_alloc)
00042   , x(0.0)
00043   , y(0.0)
00044   , width(0.0)
00045   , height(0.0)
00046   , distance(0.0)
00047   , info(_alloc)
00048   {
00049   }
00050 
00051   typedef  ::std_msgs::Header_<ContainerAllocator>  _header_type;
00052    ::std_msgs::Header_<ContainerAllocator>  header;
00053 
00054   typedef  ::sensor_msgs::CameraInfo_<ContainerAllocator>  _camera_info_type;
00055    ::sensor_msgs::CameraInfo_<ContainerAllocator>  camera_info;
00056 
00057   typedef float _x_type;
00058   float x;
00059 
00060   typedef float _y_type;
00061   float y;
00062 
00063   typedef float _width_type;
00064   float width;
00065 
00066   typedef float _height_type;
00067   float height;
00068 
00069   typedef float _distance_type;
00070   float distance;
00071 
00072   typedef  ::hector_worldmodel_msgs::PerceptInfo_<ContainerAllocator>  _info_type;
00073    ::hector_worldmodel_msgs::PerceptInfo_<ContainerAllocator>  info;
00074 
00075 
00076   typedef boost::shared_ptr< ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> > Ptr;
00077   typedef boost::shared_ptr< ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator>  const> ConstPtr;
00078   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00079 }; // struct ImagePercept
00080 typedef  ::hector_worldmodel_msgs::ImagePercept_<std::allocator<void> > ImagePercept;
00081 
00082 typedef boost::shared_ptr< ::hector_worldmodel_msgs::ImagePercept> ImagePerceptPtr;
00083 typedef boost::shared_ptr< ::hector_worldmodel_msgs::ImagePercept const> ImagePerceptConstPtr;
00084 
00085 
00086 template<typename ContainerAllocator>
00087 std::ostream& operator<<(std::ostream& s, const  ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> & v)
00088 {
00089   ros::message_operations::Printer< ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> >::stream(s, "", v);
00090   return s;}
00091 
00092 } // namespace hector_worldmodel_msgs
00093 
00094 namespace ros
00095 {
00096 namespace message_traits
00097 {
00098 template<class ContainerAllocator> struct IsMessage< ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> > : public TrueType {};
00099 template<class ContainerAllocator> struct IsMessage< ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator>  const> : public TrueType {};
00100 template<class ContainerAllocator>
00101 struct MD5Sum< ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> > {
00102   static const char* value() 
00103   {
00104     return "cfe1ba9ccbb3e43950b420f7336a3c6c";
00105   }
00106 
00107   static const char* value(const  ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> &) { return value(); } 
00108   static const uint64_t static_value1 = 0xcfe1ba9ccbb3e439ULL;
00109   static const uint64_t static_value2 = 0x50b420f7336a3c6cULL;
00110 };
00111 
00112 template<class ContainerAllocator>
00113 struct DataType< ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> > {
00114   static const char* value() 
00115   {
00116     return "hector_worldmodel_msgs/ImagePercept";
00117   }
00118 
00119   static const char* value(const  ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> &) { return value(); } 
00120 };
00121 
00122 template<class ContainerAllocator>
00123 struct Definition< ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> > {
00124   static const char* value() 
00125   {
00126     return "# hector_worldmodel_msgs/ImagePercept\n\
00127 # This message represents an observation of an object in a single image.\n\
00128 \n\
00129 # The header should equal the header of the corresponding image.\n\
00130 Header header\n\
00131 \n\
00132 # The camera info which is needed to project from image coordinates to world coordinates\n\
00133 sensor_msgs/CameraInfo camera_info\n\
00134 \n\
00135 # Center coordinates of the percept in image coordinates\n\
00136 # x: axis points to the right in the image\n\
00137 # y: axis points downward in the image\n\
00138 float32 x\n\
00139 float32 y\n\
00140 \n\
00141 # Normalized size of the percept in image coordinates (or 0.0)\n\
00142 float32 width\n\
00143 float32 height\n\
00144 \n\
00145 # Distance estimate (slope distance) (or 0.0)\n\
00146 float32 distance\n\
00147 \n\
00148 # Additional information about the percept\n\
00149 PerceptInfo info\n\
00150 \n\
00151 ================================================================================\n\
00152 MSG: std_msgs/Header\n\
00153 # Standard metadata for higher-level stamped data types.\n\
00154 # This is generally used to communicate timestamped data \n\
00155 # in a particular coordinate frame.\n\
00156 # \n\
00157 # sequence ID: consecutively increasing ID \n\
00158 uint32 seq\n\
00159 #Two-integer timestamp that is expressed as:\n\
00160 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00161 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00162 # time-handling sugar is provided by the client library\n\
00163 time stamp\n\
00164 #Frame this data is associated with\n\
00165 # 0: no frame\n\
00166 # 1: global frame\n\
00167 string frame_id\n\
00168 \n\
00169 ================================================================================\n\
00170 MSG: sensor_msgs/CameraInfo\n\
00171 # This message defines meta information for a camera. It should be in a\n\
00172 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00173 # image topics named:\n\
00174 #\n\
00175 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00176 #   image            - monochrome, distorted\n\
00177 #   image_color      - color, distorted\n\
00178 #   image_rect       - monochrome, rectified\n\
00179 #   image_rect_color - color, rectified\n\
00180 #\n\
00181 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00182 # for producing the four processed image topics from image_raw and\n\
00183 # camera_info. The meaning of the camera parameters are described in\n\
00184 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00185 #\n\
00186 # The image_geometry package provides a user-friendly interface to\n\
00187 # common operations using this meta information. If you want to, e.g.,\n\
00188 # project a 3d point into image coordinates, we strongly recommend\n\
00189 # using image_geometry.\n\
00190 #\n\
00191 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00192 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00193 # indicates an uncalibrated camera.\n\
00194 \n\
00195 #######################################################################\n\
00196 #                     Image acquisition info                          #\n\
00197 #######################################################################\n\
00198 \n\
00199 # Time of image acquisition, camera coordinate frame ID\n\
00200 Header header    # Header timestamp should be acquisition time of image\n\
00201                  # Header frame_id should be optical frame of camera\n\
00202                  # origin of frame should be optical center of camera\n\
00203                  # +x should point to the right in the image\n\
00204                  # +y should point down in the image\n\
00205                  # +z should point into the plane of the image\n\
00206 \n\
00207 \n\
00208 #######################################################################\n\
00209 #                      Calibration Parameters                         #\n\
00210 #######################################################################\n\
00211 # These are fixed during camera calibration. Their values will be the #\n\
00212 # same in all messages until the camera is recalibrated. Note that    #\n\
00213 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00214 #                                                                     #\n\
00215 # The internal parameters can be used to warp a raw (distorted) image #\n\
00216 # to:                                                                 #\n\
00217 #   1. An undistorted image (requires D and K)                        #\n\
00218 #   2. A rectified image (requires D, K, R)                           #\n\
00219 # The projection matrix P projects 3D points into the rectified image.#\n\
00220 #######################################################################\n\
00221 \n\
00222 # The image dimensions with which the camera was calibrated. Normally\n\
00223 # this will be the full camera resolution in pixels.\n\
00224 uint32 height\n\
00225 uint32 width\n\
00226 \n\
00227 # The distortion model used. Supported models are listed in\n\
00228 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00229 # simple model of radial and tangential distortion - is sufficent.\n\
00230 string distortion_model\n\
00231 \n\
00232 # The distortion parameters, size depending on the distortion model.\n\
00233 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00234 float64[] D\n\
00235 \n\
00236 # Intrinsic camera matrix for the raw (distorted) images.\n\
00237 #     [fx  0 cx]\n\
00238 # K = [ 0 fy cy]\n\
00239 #     [ 0  0  1]\n\
00240 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00241 # coordinates using the focal lengths (fx, fy) and principal point\n\
00242 # (cx, cy).\n\
00243 float64[9]  K # 3x3 row-major matrix\n\
00244 \n\
00245 # Rectification matrix (stereo cameras only)\n\
00246 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00247 # stereo image plane so that epipolar lines in both stereo images are\n\
00248 # parallel.\n\
00249 float64[9]  R # 3x3 row-major matrix\n\
00250 \n\
00251 # Projection/camera matrix\n\
00252 #     [fx'  0  cx' Tx]\n\
00253 # P = [ 0  fy' cy' Ty]\n\
00254 #     [ 0   0   1   0]\n\
00255 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00256 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00257 #  is the normal camera intrinsic matrix for the rectified image.\n\
00258 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00259 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00260 #  (cx', cy') - these may differ from the values in K.\n\
00261 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00262 #  also have R = the identity and P[1:3,1:3] = K.\n\
00263 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00264 #  position of the optical center of the second camera in the first\n\
00265 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00266 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00267 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00268 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00269 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00270 #  the rectified image is given by:\n\
00271 #  [u v w]' = P * [X Y Z 1]'\n\
00272 #         x = u / w\n\
00273 #         y = v / w\n\
00274 #  This holds for both images of a stereo pair.\n\
00275 float64[12] P # 3x4 row-major matrix\n\
00276 \n\
00277 \n\
00278 #######################################################################\n\
00279 #                      Operational Parameters                         #\n\
00280 #######################################################################\n\
00281 # These define the image region actually captured by the camera       #\n\
00282 # driver. Although they affect the geometry of the output image, they #\n\
00283 # may be changed freely without recalibrating the camera.             #\n\
00284 #######################################################################\n\
00285 \n\
00286 # Binning refers here to any camera setting which combines rectangular\n\
00287 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00288 #  resolution of the output image to\n\
00289 #  (width / binning_x) x (height / binning_y).\n\
00290 # The default values binning_x = binning_y = 0 is considered the same\n\
00291 #  as binning_x = binning_y = 1 (no subsampling).\n\
00292 uint32 binning_x\n\
00293 uint32 binning_y\n\
00294 \n\
00295 # Region of interest (subwindow of full camera resolution), given in\n\
00296 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00297 #  always denotes the same window of pixels on the camera sensor,\n\
00298 #  regardless of binning settings.\n\
00299 # The default setting of roi (all values 0) is considered the same as\n\
00300 #  full resolution (roi.width = width, roi.height = height).\n\
00301 RegionOfInterest roi\n\
00302 \n\
00303 ================================================================================\n\
00304 MSG: sensor_msgs/RegionOfInterest\n\
00305 # This message is used to specify a region of interest within an image.\n\
00306 #\n\
00307 # When used to specify the ROI setting of the camera when the image was\n\
00308 # taken, the height and width fields should either match the height and\n\
00309 # width fields for the associated image; or height = width = 0\n\
00310 # indicates that the full resolution image was captured.\n\
00311 \n\
00312 uint32 x_offset  # Leftmost pixel of the ROI\n\
00313                  # (0 if the ROI includes the left edge of the image)\n\
00314 uint32 y_offset  # Topmost pixel of the ROI\n\
00315                  # (0 if the ROI includes the top edge of the image)\n\
00316 uint32 height    # Height of ROI\n\
00317 uint32 width     # Width of ROI\n\
00318 \n\
00319 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00320 # ROI in this message. Typically this should be False if the full image\n\
00321 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00322 # used).\n\
00323 bool do_rectify\n\
00324 \n\
00325 ================================================================================\n\
00326 MSG: hector_worldmodel_msgs/PerceptInfo\n\
00327 # hector_worldmodel_msgs/PerceptInfo\n\
00328 # This message contains information about the estimated class and object identity \n\
00329 \n\
00330 # A string identifying the object's class (all objects of a class look the same)\n\
00331 string class_id\n\
00332 \n\
00333 # The class association support of the observation\n\
00334 # The support is the log odd likelihood ratio given by log(p(y/observation y belongs to object of class class_id) / p(y/observation y is a false positive))\n\
00335 float32 class_support\n\
00336 \n\
00337 # A string identifying a specific object\n\
00338 string object_id\n\
00339 \n\
00340 # The object association support of the observation\n\
00341 # The support is the log odd likelihood ratio given by log(p(observation belongs to object object_id) / p(observation is false positive or belongs to another object))\n\
00342 float32 object_support\n\
00343 \n\
00344 # A string that contains the name or a description of the specific object\n\
00345 string name\n\
00346 \n\
00347 ";
00348   }
00349 
00350   static const char* value(const  ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> &) { return value(); } 
00351 };
00352 
00353 template<class ContainerAllocator> struct HasHeader< ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> > : public TrueType {};
00354 template<class ContainerAllocator> struct HasHeader< const ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> > : public TrueType {};
00355 } // namespace message_traits
00356 } // namespace ros
00357 
00358 namespace ros
00359 {
00360 namespace serialization
00361 {
00362 
00363 template<class ContainerAllocator> struct Serializer< ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> >
00364 {
00365   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00366   {
00367     stream.next(m.header);
00368     stream.next(m.camera_info);
00369     stream.next(m.x);
00370     stream.next(m.y);
00371     stream.next(m.width);
00372     stream.next(m.height);
00373     stream.next(m.distance);
00374     stream.next(m.info);
00375   }
00376 
00377   ROS_DECLARE_ALLINONE_SERIALIZER;
00378 }; // struct ImagePercept_
00379 } // namespace serialization
00380 } // namespace ros
00381 
00382 namespace ros
00383 {
00384 namespace message_operations
00385 {
00386 
00387 template<class ContainerAllocator>
00388 struct Printer< ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> >
00389 {
00390   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::hector_worldmodel_msgs::ImagePercept_<ContainerAllocator> & v) 
00391   {
00392     s << indent << "header: ";
00393 s << std::endl;
00394     Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + "  ", v.header);
00395     s << indent << "camera_info: ";
00396 s << std::endl;
00397     Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + "  ", v.camera_info);
00398     s << indent << "x: ";
00399     Printer<float>::stream(s, indent + "  ", v.x);
00400     s << indent << "y: ";
00401     Printer<float>::stream(s, indent + "  ", v.y);
00402     s << indent << "width: ";
00403     Printer<float>::stream(s, indent + "  ", v.width);
00404     s << indent << "height: ";
00405     Printer<float>::stream(s, indent + "  ", v.height);
00406     s << indent << "distance: ";
00407     Printer<float>::stream(s, indent + "  ", v.distance);
00408     s << indent << "info: ";
00409 s << std::endl;
00410     Printer< ::hector_worldmodel_msgs::PerceptInfo_<ContainerAllocator> >::stream(s, indent + "  ", v.info);
00411   }
00412 };
00413 
00414 
00415 } // namespace message_operations
00416 } // namespace ros
00417 
00418 #endif // HECTOR_WORLDMODEL_MSGS_MESSAGE_IMAGEPERCEPT_H
00419 


hector_worldmodel_msgs
Author(s): Johannes Meyer
autogenerated on Mon Oct 6 2014 00:36:27