Go to the documentation of this file.00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 
00038 #ifndef PCL_FEATURES_SGF2_H_
00039 #define PCL_FEATURES_SGF2_H_
00040 
00041 #include <pcl17/features/feature.h>
00042 #include <pcl17/features/normal_3d.h>
00043 #include <numeric>
00044 
00045 namespace pcl17 {
00046 const int SGF2_SIZE = 1;
00047 
00048 template<typename PointInT, typename PointOutT>
00049 class SGF2Estimation: public Feature<PointInT, PointOutT> {
00050 
00051 public:
00052 
00053         using Feature<PointInT, PointOutT>::feature_name_;
00054         using Feature<PointInT, PointOutT>::input_;
00055         using Feature<PointInT, PointOutT>::indices_;
00056         using Feature<PointInT, PointOutT>::search_parameter_;
00057         using Feature<PointInT, PointOutT>::k_;
00058 
00059         typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
00060         typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
00061 
00063         SGF2Estimation() {
00064                 feature_name_ = "SGF2Estimation";
00065                 k_ = 1;
00066         }
00067         ;
00068 
00070         void computeFeature(PointCloudOut &output) {
00071 
00072                 PointCloud<Normal>::Ptr normals(new PointCloud<Normal> ());
00073                 NormalEstimation<PointInT, Normal> n;
00074 
00075                 std::vector<int> nn_indices;
00076                 std::vector<float> nn_sqr_dists;
00077                 Eigen::Vector4f parameters;
00078                 Eigen::VectorXf vec(indices_->size());
00079 
00080                 for (size_t idx = 0; idx < indices_->size(); ++idx) {
00081                         float curvature;
00082                         this->searchForNeighbors((*indices_)[idx], search_parameter_,
00083                                         nn_indices, nn_sqr_dists);
00084                         n.computePointNormal(*input_, nn_indices, parameters, curvature);
00085                         vec[idx] = curvature;
00086                 }
00087 
00088                 output.points[0].histogram[0] = vec.mean();
00089 
00090         }
00092 
00093 
00094 private:
00095 
00099         void computeFeatureEigen(pcl17::PointCloud<Eigen::MatrixXf> &) {
00100         }
00101 };
00102 }
00103 
00104 #endif  //#ifndef PCL_FEATURES_SGF2_H_