RawCloudData.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-groovy-jsk_recognition/doc_stacks/2014-10-06_01-11-29.486738/jsk_recognition/cr_capture/msg/RawCloudData.msg */
00002 #ifndef CR_CAPTURE_MESSAGE_RAWCLOUDDATA_H
00003 #define CR_CAPTURE_MESSAGE_RAWCLOUDDATA_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "std_msgs/Header.h"
00018 #include "sensor_msgs/Image.h"
00019 #include "sensor_msgs/Image.h"
00020 #include "sensor_msgs/Image.h"
00021 #include "sensor_msgs/Image.h"
00022 #include "sensor_msgs/CameraInfo.h"
00023 #include "sensor_msgs/Image.h"
00024 #include "sensor_msgs/Image.h"
00025 #include "sensor_msgs/CameraInfo.h"
00026 #include "sensor_msgs/CameraInfo.h"
00027 #include "cr_capture/PixelIndices.h"
00028 #include "sensor_msgs/PointCloud2.h"
00029 
00030 namespace cr_capture
00031 {
00032 template <class ContainerAllocator>
00033 struct RawCloudData_ {
00034   typedef RawCloudData_<ContainerAllocator> Type;
00035 
00036   RawCloudData_()
00037   : header()
00038   , intensity()
00039   , confidence()
00040   , depth()
00041   , depth16()
00042   , range_info()
00043   , left_image()
00044   , right_image()
00045   , left_info()
00046   , right_info()
00047   , pixel_indices()
00048   , point_cloud()
00049   {
00050   }
00051 
00052   RawCloudData_(const ContainerAllocator& _alloc)
00053   : header(_alloc)
00054   , intensity(_alloc)
00055   , confidence(_alloc)
00056   , depth(_alloc)
00057   , depth16(_alloc)
00058   , range_info(_alloc)
00059   , left_image(_alloc)
00060   , right_image(_alloc)
00061   , left_info(_alloc)
00062   , right_info(_alloc)
00063   , pixel_indices(_alloc)
00064   , point_cloud(_alloc)
00065   {
00066   }
00067 
00068   typedef  ::std_msgs::Header_<ContainerAllocator>  _header_type;
00069    ::std_msgs::Header_<ContainerAllocator>  header;
00070 
00071   typedef  ::sensor_msgs::Image_<ContainerAllocator>  _intensity_type;
00072    ::sensor_msgs::Image_<ContainerAllocator>  intensity;
00073 
00074   typedef  ::sensor_msgs::Image_<ContainerAllocator>  _confidence_type;
00075    ::sensor_msgs::Image_<ContainerAllocator>  confidence;
00076 
00077   typedef  ::sensor_msgs::Image_<ContainerAllocator>  _depth_type;
00078    ::sensor_msgs::Image_<ContainerAllocator>  depth;
00079 
00080   typedef  ::sensor_msgs::Image_<ContainerAllocator>  _depth16_type;
00081    ::sensor_msgs::Image_<ContainerAllocator>  depth16;
00082 
00083   typedef  ::sensor_msgs::CameraInfo_<ContainerAllocator>  _range_info_type;
00084    ::sensor_msgs::CameraInfo_<ContainerAllocator>  range_info;
00085 
00086   typedef  ::sensor_msgs::Image_<ContainerAllocator>  _left_image_type;
00087    ::sensor_msgs::Image_<ContainerAllocator>  left_image;
00088 
00089   typedef  ::sensor_msgs::Image_<ContainerAllocator>  _right_image_type;
00090    ::sensor_msgs::Image_<ContainerAllocator>  right_image;
00091 
00092   typedef  ::sensor_msgs::CameraInfo_<ContainerAllocator>  _left_info_type;
00093    ::sensor_msgs::CameraInfo_<ContainerAllocator>  left_info;
00094 
00095   typedef  ::sensor_msgs::CameraInfo_<ContainerAllocator>  _right_info_type;
00096    ::sensor_msgs::CameraInfo_<ContainerAllocator>  right_info;
00097 
00098   typedef  ::cr_capture::PixelIndices_<ContainerAllocator>  _pixel_indices_type;
00099    ::cr_capture::PixelIndices_<ContainerAllocator>  pixel_indices;
00100 
00101   typedef  ::sensor_msgs::PointCloud2_<ContainerAllocator>  _point_cloud_type;
00102    ::sensor_msgs::PointCloud2_<ContainerAllocator>  point_cloud;
00103 
00104 
00105   typedef boost::shared_ptr< ::cr_capture::RawCloudData_<ContainerAllocator> > Ptr;
00106   typedef boost::shared_ptr< ::cr_capture::RawCloudData_<ContainerAllocator>  const> ConstPtr;
00107   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00108 }; // struct RawCloudData
00109 typedef  ::cr_capture::RawCloudData_<std::allocator<void> > RawCloudData;
00110 
00111 typedef boost::shared_ptr< ::cr_capture::RawCloudData> RawCloudDataPtr;
00112 typedef boost::shared_ptr< ::cr_capture::RawCloudData const> RawCloudDataConstPtr;
00113 
00114 
00115 template<typename ContainerAllocator>
00116 std::ostream& operator<<(std::ostream& s, const  ::cr_capture::RawCloudData_<ContainerAllocator> & v)
00117 {
00118   ros::message_operations::Printer< ::cr_capture::RawCloudData_<ContainerAllocator> >::stream(s, "", v);
00119   return s;}
00120 
00121 } // namespace cr_capture
00122 
00123 namespace ros
00124 {
00125 namespace message_traits
00126 {
00127 template<class ContainerAllocator> struct IsMessage< ::cr_capture::RawCloudData_<ContainerAllocator> > : public TrueType {};
00128 template<class ContainerAllocator> struct IsMessage< ::cr_capture::RawCloudData_<ContainerAllocator>  const> : public TrueType {};
00129 template<class ContainerAllocator>
00130 struct MD5Sum< ::cr_capture::RawCloudData_<ContainerAllocator> > {
00131   static const char* value() 
00132   {
00133     return "576b69ba11e4225220315b3f3359d42e";
00134   }
00135 
00136   static const char* value(const  ::cr_capture::RawCloudData_<ContainerAllocator> &) { return value(); } 
00137   static const uint64_t static_value1 = 0x576b69ba11e42252ULL;
00138   static const uint64_t static_value2 = 0x20315b3f3359d42eULL;
00139 };
00140 
00141 template<class ContainerAllocator>
00142 struct DataType< ::cr_capture::RawCloudData_<ContainerAllocator> > {
00143   static const char* value() 
00144   {
00145     return "cr_capture/RawCloudData";
00146   }
00147 
00148   static const char* value(const  ::cr_capture::RawCloudData_<ContainerAllocator> &) { return value(); } 
00149 };
00150 
00151 template<class ContainerAllocator>
00152 struct Definition< ::cr_capture::RawCloudData_<ContainerAllocator> > {
00153   static const char* value() 
00154   {
00155     return "Header header\n\
00156 # range sensor\n\
00157 sensor_msgs/Image intensity\n\
00158 sensor_msgs/Image confidence\n\
00159 sensor_msgs/Image depth\n\
00160 sensor_msgs/Image depth16\n\
00161 # sensor_msgs/PointCloud point_cloud_raw\n\
00162 sensor_msgs/CameraInfo range_info\n\
00163 \n\
00164 # camera\n\
00165 sensor_msgs/Image left_image\n\
00166 sensor_msgs/Image right_image\n\
00167 sensor_msgs/CameraInfo left_info\n\
00168 sensor_msgs/CameraInfo right_info\n\
00169 \n\
00170 # result\n\
00171 cr_capture/PixelIndices pixel_indices\n\
00172 sensor_msgs/PointCloud2 point_cloud\n\
00173 \n\
00174 ================================================================================\n\
00175 MSG: std_msgs/Header\n\
00176 # Standard metadata for higher-level stamped data types.\n\
00177 # This is generally used to communicate timestamped data \n\
00178 # in a particular coordinate frame.\n\
00179 # \n\
00180 # sequence ID: consecutively increasing ID \n\
00181 uint32 seq\n\
00182 #Two-integer timestamp that is expressed as:\n\
00183 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00184 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00185 # time-handling sugar is provided by the client library\n\
00186 time stamp\n\
00187 #Frame this data is associated with\n\
00188 # 0: no frame\n\
00189 # 1: global frame\n\
00190 string frame_id\n\
00191 \n\
00192 ================================================================================\n\
00193 MSG: sensor_msgs/Image\n\
00194 # This message contains an uncompressed image\n\
00195 # (0, 0) is at top-left corner of image\n\
00196 #\n\
00197 \n\
00198 Header header        # Header timestamp should be acquisition time of image\n\
00199                      # Header frame_id should be optical frame of camera\n\
00200                      # origin of frame should be optical center of cameara\n\
00201                      # +x should point to the right in the image\n\
00202                      # +y should point down in the image\n\
00203                      # +z should point into to plane of the image\n\
00204                      # If the frame_id here and the frame_id of the CameraInfo\n\
00205                      # message associated with the image conflict\n\
00206                      # the behavior is undefined\n\
00207 \n\
00208 uint32 height         # image height, that is, number of rows\n\
00209 uint32 width          # image width, that is, number of columns\n\
00210 \n\
00211 # The legal values for encoding are in file src/image_encodings.cpp\n\
00212 # If you want to standardize a new string format, join\n\
00213 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00214 \n\
00215 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00216                       # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00217 \n\
00218 uint8 is_bigendian    # is this data bigendian?\n\
00219 uint32 step           # Full row length in bytes\n\
00220 uint8[] data          # actual matrix data, size is (step * rows)\n\
00221 \n\
00222 ================================================================================\n\
00223 MSG: sensor_msgs/CameraInfo\n\
00224 # This message defines meta information for a camera. It should be in a\n\
00225 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00226 # image topics named:\n\
00227 #\n\
00228 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00229 #   image            - monochrome, distorted\n\
00230 #   image_color      - color, distorted\n\
00231 #   image_rect       - monochrome, rectified\n\
00232 #   image_rect_color - color, rectified\n\
00233 #\n\
00234 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00235 # for producing the four processed image topics from image_raw and\n\
00236 # camera_info. The meaning of the camera parameters are described in\n\
00237 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00238 #\n\
00239 # The image_geometry package provides a user-friendly interface to\n\
00240 # common operations using this meta information. If you want to, e.g.,\n\
00241 # project a 3d point into image coordinates, we strongly recommend\n\
00242 # using image_geometry.\n\
00243 #\n\
00244 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00245 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00246 # indicates an uncalibrated camera.\n\
00247 \n\
00248 #######################################################################\n\
00249 #                     Image acquisition info                          #\n\
00250 #######################################################################\n\
00251 \n\
00252 # Time of image acquisition, camera coordinate frame ID\n\
00253 Header header    # Header timestamp should be acquisition time of image\n\
00254                  # Header frame_id should be optical frame of camera\n\
00255                  # origin of frame should be optical center of camera\n\
00256                  # +x should point to the right in the image\n\
00257                  # +y should point down in the image\n\
00258                  # +z should point into the plane of the image\n\
00259 \n\
00260 \n\
00261 #######################################################################\n\
00262 #                      Calibration Parameters                         #\n\
00263 #######################################################################\n\
00264 # These are fixed during camera calibration. Their values will be the #\n\
00265 # same in all messages until the camera is recalibrated. Note that    #\n\
00266 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00267 #                                                                     #\n\
00268 # The internal parameters can be used to warp a raw (distorted) image #\n\
00269 # to:                                                                 #\n\
00270 #   1. An undistorted image (requires D and K)                        #\n\
00271 #   2. A rectified image (requires D, K, R)                           #\n\
00272 # The projection matrix P projects 3D points into the rectified image.#\n\
00273 #######################################################################\n\
00274 \n\
00275 # The image dimensions with which the camera was calibrated. Normally\n\
00276 # this will be the full camera resolution in pixels.\n\
00277 uint32 height\n\
00278 uint32 width\n\
00279 \n\
00280 # The distortion model used. Supported models are listed in\n\
00281 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00282 # simple model of radial and tangential distortion - is sufficent.\n\
00283 string distortion_model\n\
00284 \n\
00285 # The distortion parameters, size depending on the distortion model.\n\
00286 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00287 float64[] D\n\
00288 \n\
00289 # Intrinsic camera matrix for the raw (distorted) images.\n\
00290 #     [fx  0 cx]\n\
00291 # K = [ 0 fy cy]\n\
00292 #     [ 0  0  1]\n\
00293 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00294 # coordinates using the focal lengths (fx, fy) and principal point\n\
00295 # (cx, cy).\n\
00296 float64[9]  K # 3x3 row-major matrix\n\
00297 \n\
00298 # Rectification matrix (stereo cameras only)\n\
00299 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00300 # stereo image plane so that epipolar lines in both stereo images are\n\
00301 # parallel.\n\
00302 float64[9]  R # 3x3 row-major matrix\n\
00303 \n\
00304 # Projection/camera matrix\n\
00305 #     [fx'  0  cx' Tx]\n\
00306 # P = [ 0  fy' cy' Ty]\n\
00307 #     [ 0   0   1   0]\n\
00308 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00309 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00310 #  is the normal camera intrinsic matrix for the rectified image.\n\
00311 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00312 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00313 #  (cx', cy') - these may differ from the values in K.\n\
00314 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00315 #  also have R = the identity and P[1:3,1:3] = K.\n\
00316 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00317 #  position of the optical center of the second camera in the first\n\
00318 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00319 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00320 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00321 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00322 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00323 #  the rectified image is given by:\n\
00324 #  [u v w]' = P * [X Y Z 1]'\n\
00325 #         x = u / w\n\
00326 #         y = v / w\n\
00327 #  This holds for both images of a stereo pair.\n\
00328 float64[12] P # 3x4 row-major matrix\n\
00329 \n\
00330 \n\
00331 #######################################################################\n\
00332 #                      Operational Parameters                         #\n\
00333 #######################################################################\n\
00334 # These define the image region actually captured by the camera       #\n\
00335 # driver. Although they affect the geometry of the output image, they #\n\
00336 # may be changed freely without recalibrating the camera.             #\n\
00337 #######################################################################\n\
00338 \n\
00339 # Binning refers here to any camera setting which combines rectangular\n\
00340 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00341 #  resolution of the output image to\n\
00342 #  (width / binning_x) x (height / binning_y).\n\
00343 # The default values binning_x = binning_y = 0 is considered the same\n\
00344 #  as binning_x = binning_y = 1 (no subsampling).\n\
00345 uint32 binning_x\n\
00346 uint32 binning_y\n\
00347 \n\
00348 # Region of interest (subwindow of full camera resolution), given in\n\
00349 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00350 #  always denotes the same window of pixels on the camera sensor,\n\
00351 #  regardless of binning settings.\n\
00352 # The default setting of roi (all values 0) is considered the same as\n\
00353 #  full resolution (roi.width = width, roi.height = height).\n\
00354 RegionOfInterest roi\n\
00355 \n\
00356 ================================================================================\n\
00357 MSG: sensor_msgs/RegionOfInterest\n\
00358 # This message is used to specify a region of interest within an image.\n\
00359 #\n\
00360 # When used to specify the ROI setting of the camera when the image was\n\
00361 # taken, the height and width fields should either match the height and\n\
00362 # width fields for the associated image; or height = width = 0\n\
00363 # indicates that the full resolution image was captured.\n\
00364 \n\
00365 uint32 x_offset  # Leftmost pixel of the ROI\n\
00366                  # (0 if the ROI includes the left edge of the image)\n\
00367 uint32 y_offset  # Topmost pixel of the ROI\n\
00368                  # (0 if the ROI includes the top edge of the image)\n\
00369 uint32 height    # Height of ROI\n\
00370 uint32 width     # Width of ROI\n\
00371 \n\
00372 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00373 # ROI in this message. Typically this should be False if the full image\n\
00374 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00375 # used).\n\
00376 bool do_rectify\n\
00377 \n\
00378 ================================================================================\n\
00379 MSG: cr_capture/PixelIndices\n\
00380 Header header\n\
00381 int32[] indices # [[lu,ru,v],...] \n\
00382 \n\
00383 ================================================================================\n\
00384 MSG: sensor_msgs/PointCloud2\n\
00385 # This message holds a collection of N-dimensional points, which may\n\
00386 # contain additional information such as normals, intensity, etc. The\n\
00387 # point data is stored as a binary blob, its layout described by the\n\
00388 # contents of the \"fields\" array.\n\
00389 \n\
00390 # The point cloud data may be organized 2d (image-like) or 1d\n\
00391 # (unordered). Point clouds organized as 2d images may be produced by\n\
00392 # camera depth sensors such as stereo or time-of-flight.\n\
00393 \n\
00394 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00395 # points).\n\
00396 Header header\n\
00397 \n\
00398 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00399 # 1 and width is the length of the point cloud.\n\
00400 uint32 height\n\
00401 uint32 width\n\
00402 \n\
00403 # Describes the channels and their layout in the binary data blob.\n\
00404 PointField[] fields\n\
00405 \n\
00406 bool    is_bigendian # Is this data bigendian?\n\
00407 uint32  point_step   # Length of a point in bytes\n\
00408 uint32  row_step     # Length of a row in bytes\n\
00409 uint8[] data         # Actual point data, size is (row_step*height)\n\
00410 \n\
00411 bool is_dense        # True if there are no invalid points\n\
00412 \n\
00413 ================================================================================\n\
00414 MSG: sensor_msgs/PointField\n\
00415 # This message holds the description of one point entry in the\n\
00416 # PointCloud2 message format.\n\
00417 uint8 INT8    = 1\n\
00418 uint8 UINT8   = 2\n\
00419 uint8 INT16   = 3\n\
00420 uint8 UINT16  = 4\n\
00421 uint8 INT32   = 5\n\
00422 uint8 UINT32  = 6\n\
00423 uint8 FLOAT32 = 7\n\
00424 uint8 FLOAT64 = 8\n\
00425 \n\
00426 string name      # Name of field\n\
00427 uint32 offset    # Offset from start of point struct\n\
00428 uint8  datatype  # Datatype enumeration, see above\n\
00429 uint32 count     # How many elements in the field\n\
00430 \n\
00431 ";
00432   }
00433 
00434   static const char* value(const  ::cr_capture::RawCloudData_<ContainerAllocator> &) { return value(); } 
00435 };
00436 
00437 template<class ContainerAllocator> struct HasHeader< ::cr_capture::RawCloudData_<ContainerAllocator> > : public TrueType {};
00438 template<class ContainerAllocator> struct HasHeader< const ::cr_capture::RawCloudData_<ContainerAllocator> > : public TrueType {};
00439 } // namespace message_traits
00440 } // namespace ros
00441 
00442 namespace ros
00443 {
00444 namespace serialization
00445 {
00446 
00447 template<class ContainerAllocator> struct Serializer< ::cr_capture::RawCloudData_<ContainerAllocator> >
00448 {
00449   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00450   {
00451     stream.next(m.header);
00452     stream.next(m.intensity);
00453     stream.next(m.confidence);
00454     stream.next(m.depth);
00455     stream.next(m.depth16);
00456     stream.next(m.range_info);
00457     stream.next(m.left_image);
00458     stream.next(m.right_image);
00459     stream.next(m.left_info);
00460     stream.next(m.right_info);
00461     stream.next(m.pixel_indices);
00462     stream.next(m.point_cloud);
00463   }
00464 
00465   ROS_DECLARE_ALLINONE_SERIALIZER;
00466 }; // struct RawCloudData_
00467 } // namespace serialization
00468 } // namespace ros
00469 
00470 namespace ros
00471 {
00472 namespace message_operations
00473 {
00474 
00475 template<class ContainerAllocator>
00476 struct Printer< ::cr_capture::RawCloudData_<ContainerAllocator> >
00477 {
00478   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::cr_capture::RawCloudData_<ContainerAllocator> & v) 
00479   {
00480     s << indent << "header: ";
00481 s << std::endl;
00482     Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + "  ", v.header);
00483     s << indent << "intensity: ";
00484 s << std::endl;
00485     Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + "  ", v.intensity);
00486     s << indent << "confidence: ";
00487 s << std::endl;
00488     Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + "  ", v.confidence);
00489     s << indent << "depth: ";
00490 s << std::endl;
00491     Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + "  ", v.depth);
00492     s << indent << "depth16: ";
00493 s << std::endl;
00494     Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + "  ", v.depth16);
00495     s << indent << "range_info: ";
00496 s << std::endl;
00497     Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + "  ", v.range_info);
00498     s << indent << "left_image: ";
00499 s << std::endl;
00500     Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + "  ", v.left_image);
00501     s << indent << "right_image: ";
00502 s << std::endl;
00503     Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + "  ", v.right_image);
00504     s << indent << "left_info: ";
00505 s << std::endl;
00506     Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + "  ", v.left_info);
00507     s << indent << "right_info: ";
00508 s << std::endl;
00509     Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + "  ", v.right_info);
00510     s << indent << "pixel_indices: ";
00511 s << std::endl;
00512     Printer< ::cr_capture::PixelIndices_<ContainerAllocator> >::stream(s, indent + "  ", v.pixel_indices);
00513     s << indent << "point_cloud: ";
00514 s << std::endl;
00515     Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + "  ", v.point_cloud);
00516   }
00517 };
00518 
00519 
00520 } // namespace message_operations
00521 } // namespace ros
00522 
00523 #endif // CR_CAPTURE_MESSAGE_RAWCLOUDDATA_H
00524 


cr_capture
Author(s): youhei kakiuchi, JSK
autogenerated on Mon Oct 6 2014 01:16:16