00001
00002
00003
00004
00005
00006 #ifndef SIZE
00007 #define SIZE 100000
00008 #endif
00009
00010 #ifndef NBPERROW
00011 #define NBPERROW 24
00012 #endif
00013
00014 #ifndef REPEAT
00015 #define REPEAT 2
00016 #endif
00017
00018 #ifndef NBTRIES
00019 #define NBTRIES 2
00020 #endif
00021
00022 #ifndef KK
00023 #define KK 10
00024 #endif
00025
00026 #ifndef NOGOOGLE
00027 #define EIGEN_GOOGLEHASH_SUPPORT
00028 #include <google/sparse_hash_map>
00029 #endif
00030
00031 #include "BenchSparseUtil.h"
00032
00033 #define CHECK_MEM
00034
00035
00036 #define BENCH(X) \
00037 timer.reset(); \
00038 for (int _j=0; _j<NBTRIES; ++_j) { \
00039 timer.start(); \
00040 for (int _k=0; _k<REPEAT; ++_k) { \
00041 X \
00042 } timer.stop(); }
00043
00044 typedef std::vector<Vector2i> Coordinates;
00045 typedef std::vector<float> Values;
00046
00047 EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals);
00048 EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals);
00049 EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals);
00050 EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals);
00051 EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals);
00052 EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals);
00053 EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals);
00054 EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals);
00055 EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals);
00056 EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals);
00057 EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals);
00058 EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals);
00059 EIGEN_DONT_INLINE Scalar* setrand_mtl(const Coordinates& coords, const Values& vals);
00060
00061 int main(int argc, char *argv[])
00062 {
00063 int rows = SIZE;
00064 int cols = SIZE;
00065 bool fullyrand = true;
00066
00067 BenchTimer timer;
00068 Coordinates coords;
00069 Values values;
00070 if(fullyrand)
00071 {
00072 Coordinates pool;
00073 pool.reserve(cols*NBPERROW);
00074 std::cerr << "fill pool" << "\n";
00075 for (int i=0; i<cols*NBPERROW; )
00076 {
00077
00078 Vector2i ij(internal::random<int>(0,rows-1),internal::random<int>(0,cols-1));
00079
00080 {
00081
00082 pool.push_back(ij);
00083
00084 }
00085 ++i;
00086 }
00087 std::cerr << "pool ok" << "\n";
00088 int n = cols*NBPERROW*KK;
00089 coords.reserve(n);
00090 values.reserve(n);
00091 for (int i=0; i<n; ++i)
00092 {
00093 int i = internal::random<int>(0,pool.size());
00094 coords.push_back(pool[i]);
00095 values.push_back(internal::random<Scalar>());
00096 }
00097 }
00098 else
00099 {
00100 for (int j=0; j<cols; ++j)
00101 for (int i=0; i<NBPERROW; ++i)
00102 {
00103 coords.push_back(Vector2i(internal::random<int>(0,rows-1),j));
00104 values.push_back(internal::random<Scalar>());
00105 }
00106 }
00107 std::cout << "nnz = " << coords.size() << "\n";
00108 CHECK_MEM
00109
00110
00111 #ifdef DENSEMATRIX
00112 {
00113 BENCH(setrand_eigen_dense(coords,values);)
00114 std::cout << "Eigen Dense\t" << timer.value() << "\n";
00115 }
00116 #endif
00117
00118
00119
00120
00121
00122
00123
00124 {
00125 BENCH(setrand_eigen_dynamic(coords,values);)
00126 std::cout << "Eigen dynamic\t" << timer.value() << "\n";
00127 }
00128
00129
00130
00131
00132 {
00133 BENCH(setrand_eigen_sumeq(coords,values);)
00134 std::cout << "Eigen sumeq\t" << timer.value() << "\n";
00135 }
00136 {
00137
00138
00139 }
00140 {
00141 BENCH(setrand_scipy(coords,values);)
00142 std::cout << "scipy\t" << timer.value() << "\n";
00143 }
00144 #ifndef NOGOOGLE
00145 {
00146 BENCH(setrand_eigen_google_dense(coords,values);)
00147 std::cout << "Eigen google dense\t" << timer.value() << "\n";
00148 }
00149 {
00150 BENCH(setrand_eigen_google_sparse(coords,values);)
00151 std::cout << "Eigen google sparse\t" << timer.value() << "\n";
00152 }
00153 #endif
00154
00155 #ifndef NOUBLAS
00156 {
00157
00158
00159 }
00160 {
00161 BENCH(setrand_ublas_genvec(coords,values);)
00162 std::cout << "ublas vecofvec\t" << timer.value() << "\n";
00163 }
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180 #endif
00181
00182
00183
00184 #ifndef NOMTL
00185 {
00186 BENCH(setrand_mtl(coords,values));
00187 std::cout << "MTL\t" << timer.value() << "\n";
00188 }
00189 #endif
00190
00191 return 0;
00192 }
00193
00194 EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals)
00195 {
00196 using namespace Eigen;
00197 SparseMatrix<Scalar> mat(SIZE,SIZE);
00198
00199 for (int i=0; i<coords.size(); ++i)
00200 {
00201 mat.insert(coords[i].x(), coords[i].y()) = vals[i];
00202 }
00203 mat.finalize();
00204 CHECK_MEM;
00205 return 0;
00206 }
00207
00208 EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals)
00209 {
00210 using namespace Eigen;
00211 DynamicSparseMatrix<Scalar> mat(SIZE,SIZE);
00212 mat.reserve(coords.size()/10);
00213 for (int i=0; i<coords.size(); ++i)
00214 {
00215 mat.coeffRef(coords[i].x(), coords[i].y()) += vals[i];
00216 }
00217 mat.finalize();
00218 CHECK_MEM;
00219 return &mat.coeffRef(coords[0].x(), coords[0].y());
00220 }
00221
00222 EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals)
00223 {
00224 using namespace Eigen;
00225 int n = coords.size()/KK;
00226 DynamicSparseMatrix<Scalar> mat(SIZE,SIZE);
00227 for (int j=0; j<KK; ++j)
00228 {
00229 DynamicSparseMatrix<Scalar> aux(SIZE,SIZE);
00230 mat.reserve(n);
00231 for (int i=j*n; i<(j+1)*n; ++i)
00232 {
00233 aux.insert(coords[i].x(), coords[i].y()) += vals[i];
00234 }
00235 aux.finalize();
00236 mat += aux;
00237 }
00238 return &mat.coeffRef(coords[0].x(), coords[0].y());
00239 }
00240
00241 EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals)
00242 {
00243 using namespace Eigen;
00244 DynamicSparseMatrix<Scalar> setter(SIZE,SIZE);
00245 setter.reserve(coords.size()/10);
00246 for (int i=0; i<coords.size(); ++i)
00247 {
00248 setter.coeffRef(coords[i].x(), coords[i].y()) += vals[i];
00249 }
00250 SparseMatrix<Scalar> mat = setter;
00251 CHECK_MEM;
00252 return &mat.coeffRef(coords[0].x(), coords[0].y());
00253 }
00254
00255 EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals)
00256 {
00257 using namespace Eigen;
00258 SparseMatrix<Scalar> mat(SIZE,SIZE);
00259 {
00260 RandomSetter<SparseMatrix<Scalar>, StdMapTraits > setter(mat);
00261 for (int i=0; i<coords.size(); ++i)
00262 {
00263 setter(coords[i].x(), coords[i].y()) += vals[i];
00264 }
00265 CHECK_MEM;
00266 }
00267 return &mat.coeffRef(coords[0].x(), coords[0].y());
00268 }
00269
00270 #ifndef NOGOOGLE
00271 EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals)
00272 {
00273 using namespace Eigen;
00274 SparseMatrix<Scalar> mat(SIZE,SIZE);
00275 {
00276 RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat);
00277 for (int i=0; i<coords.size(); ++i)
00278 setter(coords[i].x(), coords[i].y()) += vals[i];
00279 CHECK_MEM;
00280 }
00281 return &mat.coeffRef(coords[0].x(), coords[0].y());
00282 }
00283
00284 EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals)
00285 {
00286 using namespace Eigen;
00287 SparseMatrix<Scalar> mat(SIZE,SIZE);
00288 {
00289 RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat);
00290 for (int i=0; i<coords.size(); ++i)
00291 setter(coords[i].x(), coords[i].y()) += vals[i];
00292 CHECK_MEM;
00293 }
00294 return &mat.coeffRef(coords[0].x(), coords[0].y());
00295 }
00296 #endif
00297
00298
00299 template <class T>
00300 void coo_tocsr(const int n_row,
00301 const int n_col,
00302 const int nnz,
00303 const Coordinates Aij,
00304 const Values Ax,
00305 int Bp[],
00306 int Bj[],
00307 T Bx[])
00308 {
00309
00310 std::fill(Bp, Bp + n_row, 0);
00311
00312 for (int n = 0; n < nnz; n++){
00313 Bp[Aij[n].x()]++;
00314 }
00315
00316
00317 for(int i = 0, cumsum = 0; i < n_row; i++){
00318 int temp = Bp[i];
00319 Bp[i] = cumsum;
00320 cumsum += temp;
00321 }
00322 Bp[n_row] = nnz;
00323
00324
00325 for(int n = 0; n < nnz; n++){
00326 int row = Aij[n].x();
00327 int dest = Bp[row];
00328
00329 Bj[dest] = Aij[n].y();
00330 Bx[dest] = Ax[n];
00331
00332 Bp[row]++;
00333 }
00334
00335 for(int i = 0, last = 0; i <= n_row; i++){
00336 int temp = Bp[i];
00337 Bp[i] = last;
00338 last = temp;
00339 }
00340
00341
00342 }
00343
00344 template< class T1, class T2 >
00345 bool kv_pair_less(const std::pair<T1,T2>& x, const std::pair<T1,T2>& y){
00346 return x.first < y.first;
00347 }
00348
00349
00350 template<class I, class T>
00351 void csr_sort_indices(const I n_row,
00352 const I Ap[],
00353 I Aj[],
00354 T Ax[])
00355 {
00356 std::vector< std::pair<I,T> > temp;
00357
00358 for(I i = 0; i < n_row; i++){
00359 I row_start = Ap[i];
00360 I row_end = Ap[i+1];
00361
00362 temp.clear();
00363
00364 for(I jj = row_start; jj < row_end; jj++){
00365 temp.push_back(std::make_pair(Aj[jj],Ax[jj]));
00366 }
00367
00368 std::sort(temp.begin(),temp.end(),kv_pair_less<I,T>);
00369
00370 for(I jj = row_start, n = 0; jj < row_end; jj++, n++){
00371 Aj[jj] = temp[n].first;
00372 Ax[jj] = temp[n].second;
00373 }
00374 }
00375 }
00376
00377 template <class I, class T>
00378 void csr_sum_duplicates(const I n_row,
00379 const I n_col,
00380 I Ap[],
00381 I Aj[],
00382 T Ax[])
00383 {
00384 I nnz = 0;
00385 I row_end = 0;
00386 for(I i = 0; i < n_row; i++){
00387 I jj = row_end;
00388 row_end = Ap[i+1];
00389 while( jj < row_end ){
00390 I j = Aj[jj];
00391 T x = Ax[jj];
00392 jj++;
00393 while( jj < row_end && Aj[jj] == j ){
00394 x += Ax[jj];
00395 jj++;
00396 }
00397 Aj[nnz] = j;
00398 Ax[nnz] = x;
00399 nnz++;
00400 }
00401 Ap[i+1] = nnz;
00402 }
00403 }
00404
00405 EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals)
00406 {
00407 using namespace Eigen;
00408 SparseMatrix<Scalar> mat(SIZE,SIZE);
00409 mat.resizeNonZeros(coords.size());
00410
00411 coo_tocsr<Scalar>(SIZE,SIZE, coords.size(), coords, vals, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr());
00412
00413
00414 csr_sort_indices(SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr());
00415
00416 csr_sum_duplicates(SIZE, SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr());
00417
00418 mat.resizeNonZeros(mat._outerIndexPtr()[SIZE]);
00419
00420 return &mat.coeffRef(coords[0].x(), coords[0].y());
00421 }
00422
00423
00424 #ifndef NOUBLAS
00425 EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals)
00426 {
00427 using namespace boost;
00428 using namespace boost::numeric;
00429 using namespace boost::numeric::ublas;
00430 mapped_matrix<Scalar> aux(SIZE,SIZE);
00431 for (int i=0; i<coords.size(); ++i)
00432 {
00433 aux(coords[i].x(), coords[i].y()) += vals[i];
00434 }
00435 CHECK_MEM;
00436 compressed_matrix<Scalar> mat(aux);
00437 return 0;
00438 }
00439
00440
00441
00442
00443
00444
00445
00446
00447
00448
00449
00450
00451
00452
00453
00454
00455
00456
00457
00458
00459
00460
00461
00462
00463
00464 EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals)
00465 {
00466 using namespace boost;
00467 using namespace boost::numeric;
00468 using namespace boost::numeric::ublas;
00469
00470
00471 generalized_vector_of_vector<Scalar, row_major, ublas::vector<coordinate_vector<Scalar> > > aux(SIZE,SIZE);
00472 for (int i=0; i<coords.size(); ++i)
00473 {
00474 aux(coords[i].x(), coords[i].y()) += vals[i];
00475 }
00476 CHECK_MEM;
00477 compressed_matrix<Scalar,row_major> mat(aux);
00478 return 0;
00479 }
00480 #endif
00481
00482 #ifndef NOMTL
00483 EIGEN_DONT_INLINE void setrand_mtl(const Coordinates& coords, const Values& vals);
00484 #endif
00485