dogleg.h
Go to the documentation of this file.
00001 namespace internal {
00002 
00003 template <typename Scalar>
00004 void dogleg(
00005         const Matrix< Scalar, Dynamic, Dynamic >  &qrfac,
00006         const Matrix< Scalar, Dynamic, 1 >  &diag,
00007         const Matrix< Scalar, Dynamic, 1 >  &qtb,
00008         Scalar delta,
00009         Matrix< Scalar, Dynamic, 1 >  &x)
00010 {
00011     typedef DenseIndex Index;
00012 
00013     /* Local variables */
00014     Index i, j;
00015     Scalar sum, temp, alpha, bnorm;
00016     Scalar gnorm, qnorm;
00017     Scalar sgnorm;
00018 
00019     /* Function Body */
00020     const Scalar epsmch = NumTraits<Scalar>::epsilon();
00021     const Index n = qrfac.cols();
00022     assert(n==qtb.size());
00023     assert(n==x.size());
00024     assert(n==diag.size());
00025     Matrix< Scalar, Dynamic, 1 >  wa1(n), wa2(n);
00026 
00027     /* first, calculate the gauss-newton direction. */
00028     for (j = n-1; j >=0; --j) {
00029         temp = qrfac(j,j);
00030         if (temp == 0.) {
00031             temp = epsmch * qrfac.col(j).head(j+1).maxCoeff();
00032             if (temp == 0.)
00033                 temp = epsmch;
00034         }
00035         if (j==n-1)
00036             x[j] = qtb[j] / temp;
00037         else
00038             x[j] = (qtb[j] - qrfac.row(j).tail(n-j-1).dot(x.tail(n-j-1))) / temp;
00039     }
00040 
00041     /* test whether the gauss-newton direction is acceptable. */
00042     qnorm = diag.cwiseProduct(x).stableNorm();
00043     if (qnorm <= delta)
00044         return;
00045 
00046     // TODO : this path is not tested by Eigen unit tests
00047 
00048     /* the gauss-newton direction is not acceptable. */
00049     /* next, calculate the scaled gradient direction. */
00050 
00051     wa1.fill(0.);
00052     for (j = 0; j < n; ++j) {
00053         wa1.tail(n-j) += qrfac.row(j).tail(n-j) * qtb[j];
00054         wa1[j] /= diag[j];
00055     }
00056 
00057     /* calculate the norm of the scaled gradient and test for */
00058     /* the special case in which the scaled gradient is zero. */
00059     gnorm = wa1.stableNorm();
00060     sgnorm = 0.;
00061     alpha = delta / qnorm;
00062     if (gnorm == 0.)
00063         goto algo_end;
00064 
00065     /* calculate the point along the scaled gradient */
00066     /* at which the quadratic is minimized. */
00067     wa1.array() /= (diag*gnorm).array();
00068     // TODO : once unit tests cover this part,:
00069     // wa2 = qrfac.template triangularView<Upper>() * wa1;
00070     for (j = 0; j < n; ++j) {
00071         sum = 0.;
00072         for (i = j; i < n; ++i) {
00073             sum += qrfac(j,i) * wa1[i];
00074         }
00075         wa2[j] = sum;
00076     }
00077     temp = wa2.stableNorm();
00078     sgnorm = gnorm / temp / temp;
00079 
00080     /* test whether the scaled gradient direction is acceptable. */
00081     alpha = 0.;
00082     if (sgnorm >= delta)
00083         goto algo_end;
00084 
00085     /* the scaled gradient direction is not acceptable. */
00086     /* finally, calculate the point along the dogleg */
00087     /* at which the quadratic is minimized. */
00088     bnorm = qtb.stableNorm();
00089     temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta);
00090     temp = temp - delta / qnorm * abs2(sgnorm / delta) + sqrt(abs2(temp - delta / qnorm) + (1.-abs2(delta / qnorm)) * (1.-abs2(sgnorm / delta)));
00091     alpha = delta / qnorm * (1. - abs2(sgnorm / delta)) / temp;
00092 algo_end:
00093 
00094     /* form appropriate convex combination of the gauss-newton */
00095     /* direction and the scaled gradient direction. */
00096     temp = (1.-alpha) * std::min(sgnorm,delta);
00097     x = temp * wa1 + alpha * x;
00098 }
00099 
00100 } // end namespace internal


re_vision
Author(s): Dorian Galvez-Lopez
autogenerated on Sun Jan 5 2014 11:31:02